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1 INTRODUCTION  

Mike Gill, Group on Earth Observations – Biodiversity Observation Network 

Rob H.G. Jongman, Wageningen UR, the Netherlands 

Brice Mora, GOFC-GOLD Land Cover Project Office 

Marc Paganini, European Space Agency, ESRIN 

1.1 BACKGROUND, THE ROAD TO COORDINATED 

BIODIVERSITY MONITORING SYSTEMS 

Effective, timely and informed conservation and sustainable development decisions require 

consistently produced and trustworthy biodiversity data, derived from in-situ and remotely 

sensed sources and scalable from the local to global. Producing such data requires clear 

monitoring objectives driven by user needs and a coordinated approach to allow for the 

integration of biodiversity data from multiple sources and scales. 

The past several decades have seen a growing demand for biodiversity data to inform 

development decisions at the local to national scale for underpinning sub-global and global 

assessments. The Ramsar Convention on Wetlands of International Importance, that came 

into force in 1975, was the first global Multilateral Environmental Agreement (MEA) on 

biodiversity protection. In 1992, 172 governments participated in the first Earth Summit 

held in Rio de Janeiro under the aegis of the United Nations, to define the first global plan of 

actions for the World’s sustainable development. This Rio Conference, officially called the 

United Nations Conference on Environment and Development (UNCED), resulted in the 

adoption of the three Rio Conventions, namely the Convention on Biological Diversity (CBD), 

known as the Biodiversity Convention, which entered into force in 1993, the UN Framework 

Convention on Climate Change (UNFCCC) in 1994, and the UN Convention to Combat 

Desertification (UNCCD) in 1996. During that period many scientists, civil servants, decision 

makers and politicians involved in the work of these conventions recognized that the data 

and observations required for global, regional and even national biodiversity assessments 

were largely lacking.  

Until recently, biodiversity assessments were largely uncoordinated and usually conducted 

on an individual basis by small groups of scientists. Unlike the Intergovernmental Panel on 

Climate Change (IPCC), established in 1988 to produce scientifically sound global 

assessments to support the work of the United Nations Framework Convention on Climate 

Change (UNFCCC), there were no similar mechanisms to support global biodiversity 

assessment. Moreover, biodiversity research findings were not easily integrated into policy 

making and appeared to be poorly reflected in policy discussions on biodiversity 

conservation and the contribution of ecosystems to human well-being. In 1998, Watson 

(1998) called for a more integrative assessment of scientific issues at a global level 

especially on the interlinkages between climate, biodiversity, desertification, and 

deforestation. The Millennium Ecosystem Assessment (MA), initiated in 2001, was the first 

global assessment of the consequences of ecosystem changes on human welfare and also 

the first scientific basis for coordinated actions needed to enhance the conservation and 

sustainable use of ecosystems. The MA report, which was formally presented in 2005, 

involving the work of more than 1,300 scientific experts worldwide, provided the first 

scientific evidence on the changes made to ecosystems and on the risk of irreversible loss of 

biodiversity. Although the gains in human well-being and economic development were 

recognized by the MA, these gains were being achieved at the cost of a massive degradation 
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of many ecosystems and of the services they provide, which could become a barrier to 

achieving the Millennium Development Goals. The MA also showed that, with appropriate 

coordinated and global actions, it is possible to reverse the degradation of many ecosystems 

and restore their services over the next 50 years. The MA findings were endorsed by the 

Conference of Parties (COP) of the CBD and UNCCD and by the standing committee of the 

Ramsar convention. Only in 2012, the Intergovernmental Platform for Biodiversity and 

Ecosystem Services (IPBES)1 was founded to play a similar role as IPCC for all biodiversity 

related conventions. This independent international body will strengthen the links between 

scientists and policy makers on the conservation of biodiversity and ecosystem services and 

hence support biodiversity-related policy formulation and implementation. The principal 

mandate of IPBES is to provide regular scientific assessments of the state of biodiversity 

and ecosystem services and their interlinkages, at both global and regional scales, as well 

as for thematic issues. Another function of IPBES is to prioritize the information that is 

needed for policy decision on appropriate scales and to catalyse efforts to collect the 

necessary observations and generate new knowledge. Although IPBES plays an important 

role in biodiversity knowledge building, the panel does not have the mandate to coordinate 

global data provision for biodiversity and ecosystem service assessment.  

Until the beginning of this century, monitoring biodiversity was mainly an issue of research 

institutes, museums, national agencies, individual researchers and interest groups. Species 

richness and ecosystem diversity were monitored where the ecologists or interested 

researchers were located. The best monitored taxa were birds, as they are attractive and 

easy to follow. Some research groups and conservation agencies were carrying out 

systematic surveillances of other species and ecosystems in some countries and national 

parks, but they were not generally applied and certainly not globally coordinated. The 

consequence is that the way biodiversity surveillance and monitoring was done, until 

recently, was not standardised at global or regional levels. This scarce cooperation between 

biodiversity observers was, in part, due to the barriers in global communication, only 

recently removed with the advent of the Internet. This lack of communication and 

cooperation, and therefore of harmonisation, was clearly reflected in the data that were 

used by countries in their policy reporting, as seen in the reporting by the member states of 

the European Union on the Habitats Directive, which was insufficient for some habitat types 

and species to obtain meaningful and comparable assessments. This is also illustrated in the 

results of an analysis of the CBD 4th National Reports, where only 36% of the reports 

included evidenced based policy indicators (Bubb et al. 2011). 

The Global Biodiversity Information Facility (GBIF)2 and more recently the Group on Earth 

Observations - Biodiversity Observation Network (GEO BON)3 launched in 2008 under the 

Group on Earth Observations (GEO)4 initiative have been instrumental in stimulating the 

first global coordinated efforts to harmonise biodiversity observations and to better link in-

situ and remotely-sensed information. GEO BON’s mission is to improve the acquisition, 

coordination and delivery of biodiversity observations and related services to users, 

including decision makers and the scientific community. The ultimate goal of GEO-BON is to 

promote the development of robust and interoperable observation networks that can, 

together, contribute to effective and scientifically-sound biodiversity conservation, and 

ultimately to mitigation and adaptation policy decisions regarding the world’s ecosystems, 

the biodiversity they support, and the services they provide. GEO BON activities are 

supported by the Group on Remote Sensing for Biodiversity and Conservation5 of the 

                                           
1
 http://www.ipbes.net/  

2
 http://www.gbif.org/  

3
 http://www.geobon.org/  

4
 https://www.earthobservations.org/  

5
 http://remote-sensing-biodiversity.org/networks/ceos-biodiversity/ 

http://www.ipbes.net/
http://www.gbif.org/
http://www.geobon.org/
https://www.earthobservations.org/
http://remote-sensing-biodiversity.org/networks/ceos-biodiversity/
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Committee on Earth Observation Satellites (CEOS) whose aim is to identify Earth 

Observation (EO) needs and shortcomings for biodiversity and conservation, improve the 

data exchange and the coordination between the space-based Earth Observation community 

and the ecologists, and facilitate access to remotely-sensed EO data and software for 

biodiversity and conservation activities. The Global Observation of Forest Cover and Land 

Dynamics6 (GOFC-GOLD) is another international group of EO experts, which provides 

complementary assets facilitating the interactions between space agencies, the scientific 

community and users of Earth Observation data and products, developing and promoting 

standards. These international and overarching initiatives collaborate closely with GEO-BON 

and, through these collective efforts, greatly increase the value of observations by allowing 

more biodiversity-related information to become available covering larger areas and longer 

time series. At the species level, this is slowly improving mainly through national initiatives 

in various countries and through their links with GBIF. The coordination of global efforts in 

ecosystems and habitats monitoring is still largely to be accomplished and the use of EO 

information in this context is still insufficiently exploited. Considering this, GEO BON is 

focusing on partnerships with national governments such as Colombia France, and China, 

international, regionalbodies such as the Asia-Pacific BON and Conservation of Arctic Flora 

and Fauna (CAFF) and thematic BONs, such as marine and wetlands7). to build 

interoperable biodiversity observation systems that underpin reporting requirements for 

MEAs (e.g. the CBD) and allow for the integration and scaling of biodiversity observations 

from the sub-national to the global level and for the disaggregation of global datasets to 

inform national reporting. This effort is being structured around a conceptual approach for a 

biodiversity observation and information system (Figure 1). 

                                           
6
 http://www.gofcgold.wur.nl/index.php 

7
 http://geobon.org/become-a-bon/become-a-bon/ 

http://www.gofcgold.wur.nl/index.php
http://geobon.org/become-a-bon/become-a-bon/
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Figure 1: Conceptual Framework for a National or Regional Biodiversity Observation 

System. Philip Bubb, UNEP WCMC (2015). 

Yoccoz et al (2001) stated already in 2001 that many monitoring programs for biological 

diversity suffer from design deficiencies, because they appear to be developed without 

enough attention to the basic questions: why monitor? what should be monitored? and how 

should monitoring be carried out? Biodiversity monitoring should not only serve knowledge 

development and site management. Policy decision-making and reporting on biodiversity 

trends are also important. This implies a different way to conduct biodiversity monitoring 

since it also requires a basic set of observations targeted for policy making. Biodiversity 

surveillance and monitoring must therefore evolve from purely scientific research driven 

activities to globally coordinated monitoring activities, as is already the case for climate, 

demographic, economic and health information. This also means that biodiversity science 

has to contribute to the development of globally connected information services that can 

serve decision-making and policy reporting. Applied research in biodiversity must therefore 

also be driven by policy and user needs, and consequently requires long-term continuity and 

global coverage of adequate observations. Such observations if repeated in time and in 

space allow the assessment of the effectiveness of policy implementation, if national 

management practices effectively fulfil legal obligations such as those of national 

legislations or those of legally-binding resolutions from international environmental 

agreements.  

At the 10th Conference of the Parties (COP-10) of the CBD held in Nagoya, Japan, in October 

2010, the Contracting Parties to the Convention adopted a revised and updated Strategic 
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Plan for Biodiversity 2011-20208. This plan provides a new overarching international 

framework for the CBD and all its Contracting Parties, but also for other biodiversity-related 

conventions and for all scientists, conservation agencies, national governments engaged in 

biodiversity management and policy development. The CBD Contracting Parties, which 

means all countries that have ratified the Convention, also agreed to translate this new 

Strategic Plan into National Biodiversity Strategies and Action Plans (NBSAP). The new 

Strategic Plan for Biodiversity contains a coherent overarching framework to assess 

progress toward twenty ambitious but achievable targets, collectively known as the 2020 

Aichi Biodiversity Targets. These targets are organized under five strategic goals. Strategic 

Goal A and its four targets address the drivers of biodiversity changes. Goal B contains five 

targets related to the state of biodiversity. Goal C contains three targets that look at the 

effectiveness of actions taken to protect biodiversity. Goal D contains three somewhat 

diverse targets relating to the benefits derived from biodiversity. Goal E contains four 

targets that largely relate to the CBD mechanisms. In order to monitor progress towards the 

five Goal B targets on the state of biodiversity, global-scale observations are needed by the 

CBD and above all by the IPBES, the leading intergovernmental body that has the mandate 

to assess the state of planet’s biodiversity. Large-scale observations are also required by 

the national governments of the CBD Contracting Parties, for the implementation of their 

NBSAPs and hence for their national biodiversity monitoring and assessment. There are 

known major deficiencies in the evenness and adequacy of global observations for assessing 

progress towards these targets on the state of and pressure on biodiversity. Many existing 

observations are too narrow in scope and their data quality insufficient. Target 14 

(ecosystem services) of Strategic Goal D is another target that does not have yet a globally 

adequate observation system. Target 15 seeks to relate biodiversity and climate change in 

both directions and can benefit from the observations conducted by the climate change 

community. Overall, the observations needed to monitor progress towards many of the 

2020 Aichi Biodiversity Targets are achievable only if there is a concerted international 

effort to harmonise biodiversity data collection, management and reporting. To assess 

progress towards the Aichi Biodiversity Targets and the nationally developed NBSAP targets, 

experts also need consistent global and national indicators. At its 11th Conference of the 

Parties (COP-11) in Hyderabad, India in October 2012, the CBD adopted an indicator 

framework for the Biodiversity Strategic Plan and notably for the Aichi Biodiversity Targets. 

This framework contains a list of 98 provisional indicators, which provides to the CBD and to 

the Parties a flexible basis to assess progress towards the Aichi Targets. The adoption of 

global and national indicators is fundamental since they allow conveying simple and clear 

messages to policy makers. The reporting and decision making process implies sharing 

knowledge with the world outside of scientific circles, such as the politicians and the society 

in general. When communicating with society, graphs on probabilities of species population 

changes with uncertainties do not always have the right impact. Policy makers want 

information on what goes well and what goes wrong and where and why it is happening. 

Then they can make a decision to respond. Indicators are required to provide rather simple 

information on complex processes, which can be understood by decision makers. A clear 

and unambiguous definition of indicators also facilitates the development of biodiversity 

monitoring systems since these can be tailored to the derivation of the required policy 

indicators. The CBD has mandated the Biodiversity Indicators Partnership (BIP)9 to promote 

and coordinate the development of biodiversity indicators in support to the Convention and 

to the monitoring of the 2020 Aichi Biodiversity Targets. The BIP is an international 

partnership that brings together more than 40 international organisations on the 

development of a global indicator framework and on the production of guidelines for helping 

countries defining their NBSAP indicators. The biodiversity indicators defined by the BIP 

                                           
8
 www.cbd.int/doc/meetings/cop/cop-10/information/cop-10-inf-12-rev1-en.pdf 

9
 http://www.bipindicators.net  

http://www.cbd.int/doc/meetings/cop/cop-10/information/cop-10-inf-12-rev1-en.pdf
http://www.bipindicators.net/
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provide the elements for a consistent monitoring and assessment of the state of 

biodiversity, the conditions of the ecosystems, the benefits provided by the ecosystems and 

the drivers of changes. They serve both the IPBES in its global, regional and thematic 

assessments, as well as the countries when developing their national biodiversity indicators. 

The adoption of biodiversity indicators provides also a framework for identifying the 

essential observations that are necessary to be collected in a consistent way for an efficient 

and reliable biodiversity monitoring and assessment. To do so the Essential Biodiversity 

Variables (EBVs) have been proposed as a concept to provide a consistent framework for 

biodiversity observations that allows for integration, via modelling, to produce the desired 

indicators (Pereira et al 2013). The EBVs have been mapped to the Aichi Targets and key 

indicators to exhibit this relationship (Secades et al (2014), Geijzendorffer et al. 2015). 

This means that biodiversity monitoring activities need to be of high quality, reliable and 

with assurance of continuity and consistency. They should cover the major elements of 

biodiversity value and the collected information must be exchangeable between 

conservation agencies, governments and non-governmental organisations. Cooperation is 

essential for obvious reasons of cost-effectiveness, but also to efficiently integrate all 

observations into a comprehensive knowledge of the state of biodiversity and of the levels 

of ecosystem services provision, in particular in support to the global biodiversity 

assessments performed by the IPBES for the multilateral environmental agreements, but 

also to support national scale conservation and sustainable development decisions. This 

means that there is a need for a global framework in which countries agree on what to 

measure, how to measure it and at which frequency. A conceptual and theoretical basis for 

monitoring biodiversity was given already in 1990 by Noss (1990). In his hierarchical 

characterisation of biodiversity, he emphasises that biodiversity is not just a number of 

genes, species and ecosystems, but that it should also include its most important structural, 

functional and compositional aspects. If biodiversity monitoring has to deliver data for policy 

makers, then sensitive and essential elements of biodiversity should be measured and 

translated into relevant indicators. Measurable and significant proxies should be used if it is 

too costly or too difficult to measure these essential biodiversity variables themselves. We 

have to know what the species stand for and what changes in their abundance and 

distribution mean in terms of ecosystem health and ecosystem service provision. For the 

same reasons, we also need to measure status and trends in the extent, structure and 

function of ecosystems.  

The Essential Biodiversity Variables (EBVs) have been developed upon the request of the 

CBD and represent the minimum set of essential measurements that are required to be 

collected globally and regularly for studying, reporting, and managing changes to 

biodiversity. They have been defined to capture the major dimensions of biodiversity 

changes and to provide the first level of abstraction between the primary observations and 

the high-level biodiversity indicators defined by the Biodiversity Indicators Partnership. In 

their EBV conceptual paper published in Science, Pereira et al (2013) recognized that there 

is, at present, no global and harmonized observation system that can deliver regular and 

timely data on biodiversity changes. Despite some clear progress in the digital mobilization 

of biodiversity records and data standards, the main obstacle is the lack of consensus about 

which parameters to monitor. They screened dozens of biodiversity variables to identify a 

minimum set of essential variables that fulfil criteria on scalability, feasibility, and relevance. 

The EBVs are proposed to be based both on remotely sensed observations that can be 

measured continuously across space by satellites and on field observations from local 

sampling schemes that can be integrated into large-scale generalisations. The EBVs were 

then grouped in six major classes of EBVs: genetic composition, species population, species 

traits, community composition, ecosystem structure and ecosystem function. The concept of 

EBVs has started to stimulate high interest in the biodiversity community and to catalyse 

investment in targeted and harmonized approaches to biodiversity observations. 
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The EBVs can only become a reality if ecologists and remote sensing experts join their 

efforts in defining together a global monitoring strategy for biodiversity. This is the appeal 

by Skidmore et al, calling for an agreement on the biodiversity metrics that need to be 

tracked from Space (Skidmore et al., 2015). They stressed that satellite remote sensing is 

crucial to getting long-term and global coverage of some of the essential biodiversity 

variables, for a wide range of scales and in a consistent, borderless and repeatable manner. 

To stimulate discussions, they proposed ten variables that capture biodiversity changes and 

can be monitored from Space. The main reasons why researchers were previously unable to 

define a set of biodiversity variables to be monitored from satellites were an inadequate 

access to satellite data, uncertainties in the continuity of observations and temporal and 

spatial limitations of satellite imagery. Another main bottleneck to the development of Earth 

Observation approaches in biodiversity monitoring has been the lack of communication 

between the conservation and remote-sensing communities. Most of the ecologists are ill 

equipped to effective utilize EO technologies. This requires cooperation to further promote 

EO technologies in biodiversity teaching and research, especially on the integration of EO 

and in-situ information for species and ecosystem monitoring. It also requires the 

development of tools that can facilitate the easy uptake and use of continually emerging EO 

technologies. A better use of Earth Observations by ecologists would reduce the lack of 

biodiversity information and improve their capacity to conduct proper data analysis, and 

accuracy assessment. The importance of remote sensing for biodiversity monitoring was 

also recognized in 2014 by Secades et al (2014) in their review of current EO approaches 

and future opportunities for tracking progress towards the Aichi Biodiversity Targets. This 

detailed review of the possibilities that remotely sensed data provide to biodiversity 

monitoring, has assessed the adequacy of Earth Observations to monitor progress towards 

each of the Aichi Biodiversity Targets. The review also explored the main obstacles and 

identified opportunities for a greater use of Earth Observation in biodiversity monitoring. 

There were many barriers to developing EO capacity amongst the biodiversity community 

such as the restrictive data access policies, the cost of data, the lack of EO derived products 

easy to use by ecologists, the absence of dense time series of observations and the 

uncertainties in the long term continuity of observations. In developing countries, there are 

additional barriers such as education, internet bandwidth and data access. As a conclusion, 

the review called for some consensus building between EO experts, biodiversity scientists 

and policy users to better manage the potential that EO data provide to biodiversity 

monitoring.  

During the last decade, the Space Agencies have tried to adequately respond to these 

obstacles. In 2008, the US Geological Survey (USGS) opened its Landsat archive at no 

charge over the Internet, giving free and open access to four decades of Earth 

Observations, with the direct impact that the use of satellite observations in biodiversity and 

conservation increased dramatically and that novel and innovative monitoring methods were 

developed. Others, including the Brazilean Space Agency INPE has made its archives 

accessible. The European Copernicus initiative and the Sentinels, jointly implemented by the 

European Commission and the European Space Agency (ESA), and the NASA’s Sustainable 

Land Imaging program will offer an unprecedented ensemble of satellite observations with a 

long-term continuity and a free and open data access policy. Advanced sensors to be 

launched within a decade will provide increasingly accurate information on species traits and 

ecosystem extent, function and condition. As a whole, the Space Agencies offer a large and 

growing variety of Earth Observation satellite sensors with free and open data policies, to 

efficiently monitor a number of remotely sensed parameters. Combined with in-situ 

observations and appropriate modelling, this will offer improved insights into the ecological 

processes and the disturbances that influence biodiversity. 

Reliability of measurements and accuracy estimates are also critical aspects to consider 

when dealing with biodiversity data. In the field of remotely sensed data, international 
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collaborative initiatives such as the Calibration and Validation Working Group10 of CEOS aim 

to coordinate the quantitative validation of satellite-derived products. The GOFC-GOLD is 

also engaged in defining and promoting robust validation practices of land cover and land 

cover change products at the global scale (Strahler et al., 2006, Herold et al., 2008, 

Stehman et al., 2012, Olofsson et al., 2012, Olofsson et al, 2013), but also at local and 

national scales like the Reducing Emissions from Deforestation and forest Degradation 

(REDD+) activities (GOFC-GOLD, 2014). These best practices in satellite data quality 

assessment and product validation are essential to be adopted when dealing with the 

integration of satellite-derived products in biodiversity conservation and monitoring. 

The development and production of remote sensing-based EBVs for tropical forest 

environments can benefit from these collaborative efforts of the biodiversity and EO 

communities to build a comprehensive and global monitoring of the state of and changes to 

biodiversity. It can also benefit from related activities conducted in the framework of other 

Environmental Conventions such as those of the UNFCCC in Reducing Emissions from 

Deforestation and Forest Degradation and in promoting conservation and sustainable 

management of forests and enhancement of forest carbon stocks (REDD+). Of particular 

interest is the Warsaw framework of UNFCCC COP 19, which recommended that countries 

should promote and support social and environmental safeguards for REDD+ (UNFCCC 

Decision 12/CP.1911). Concomitantly, at its 11th Conference of the Parties in Hyderabad in 

2012, the CBD has issued a decision that provides information on how safeguards relevant 

to biodiversity can be implemented by REDD+ participating countries (CBD Decision 

XI/1912). The development of REDD+ environmental safeguards in the context of the 

conservation of forest biodiversity implies that a synergetic approach to forest biodiversity 

monitoring and REDD+ activities is a policy necessity. The importance of promoting 

synergies between biodiversity monitoring and REDD+ activities were already recommended 

by complementary initiatives such as the ZSL-GIZ sourcebook, the GOFC-GOLD REDD 

sourcebook (GOFC-GOLD, 2014), and the Method and Guidance Document (GFOI, 2013) 

from the Global Forest Observation Initiative (GFOI13) of the Group on Earth Observation. 

See section 8 for synergies between biodiversity monitoring and REDD+. 

The conditions to develop a coherent, standardised and global biodiversity knowledge 

system are favourable now with the reinforcement of international environmental 

agreements such as the UNFCCC, UNCCD, CBD and the Ramsar convention. The 

overarching collaborative initiatives in the collection of biodiversity and conservation data 

(e.g. GEO-BON), the establishment of international platforms that facilitate the dialogue 

between scientists and policy makers (e.g. IPBES) show the sense of common purpose in 

informing and promoting sustainable development practices. This has also been 

demonstrated by the recent adoption of the United Nations Sustainable Development Goals 

(SDGs), the active involvement of both conservation and remote sensing communities to 

determine the essential biodiversity variables that can be monitored systematically and 

globally, and the commitment of Space Agencies to provide continuity of key observations 

of the Earth system on the long term and with a free and open data policy. Considering the 

global importance of tropical forests and the biodiversity they contain, the increasing 

development pressures on these systems and the increasing opportunities for improved and 

sustained  Earth observation due to continually improving technologies, the Sourcebook for 

biodiversity monitoring in tropical forests with remote sensing comes at the right time to 

synthesize, in a unique book, the best case practices in the monitoring of tropical forest 

biodiversity using remote sensing.  

                                           
10

 http://ceos.org/ourwork/workinggroups/wgcv/  
11

 http://unfccc.int/land_use_and_climate_change/redd/items/8180.php 
12

 http://www.cbd.int/decision/cop/default.shtml?id=13180  
13

 http://www.gfoi.org  

http://ceos.org/ourwork/workinggroups/wgcv/
http://unfccc.int/land_use_and_climate_change/redd/items/8180.php
http://www.cbd.int/decision/cop/default.shtml?id=13180
http://www.gfoi.org/
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1.2 PURPOSE AND SCOPE OF THE SOURCEBOOK  

Standardised and harmonised biodiversity data and monitoring methods are required in 

order to assess how tropical forest biodiversity is evolving at the global scale, and what the 

drivers of change are. Collaborative efforts towards the development of such harmonised 

monitoring methods are carried out by national and regional forest agencies, the scientific 

and research community, and NGOs. These standardisation efforts are supported by the 

Essential Biodiversity Variables (EBV) concept that is currently developed by GEO-BON, and 

by Space Agencies and the Earth Observation research community at large. This sourcebook 

is developed by a wide group of forest researchers and practitioners, to promote the best 

operational monitoring practices based on scientific literature, and consensus. Since there is 

a continuous evolution of national and international policy frameworks, of the available 

datasets, and of the monitoring methods, the Sourcebook for biodiversity monitoring in 

tropical forests with remote sensing is intended to be a living document that will be updated 

on a regular basis. The focus, however, on the EBV concept, allows for harmonized 

approaches to monitoring tropical forests that can be independent of the current policy 

demands. The intention is to share best approaches and find ways to harmonise the existing 

forest cover and habitat classification systems, and the methods that are used to interpret 

and process Earth Observation data without being overly prescriptive. The Sourcebook 

presents also how remote sensing data can be used jointly with in-situ data and knowledge.  

To date, GEO BON is continuing to refine and develop the EBVs with the scientific 

community in relation to the policy drivers such as the biodiversity indicators that are also 

under development. Among the current list of candidate EBVs14, the authors of the 

sourcebook selected five EBVs that are relevant to tropical forests and that can be 

monitored with remote sensing data: Vegetation phenology, Net primary productivity, 

Ecosystem extent and fragmentation, Habitat structure, and Disturbance regime. This list of 

EBVs may change following the on-going international policy discussions and scientific 

developments.  

The Sourcebook is composed of 8 sections with the following content: 

 Section 1 is the present introduction. It provides the overall framework in which the 

Sourcebook for biodiversity monitoring in tropical forests with remote sensing is 

developed. 

 Section 2 of the sourcebook presents how the six selected EBVs can inform on the 

magnitude, velocity and direction of changes, for the essential dimensions of tropical 

forest biodiversity.  

 Section 3 presents how remote sensing can help provide indicators to characterise 

drivers of biodiversity loss (proximate and underlying).  

 Section 4 presents operational methods based on remote sensing data coupled with 

field observations to produce the six selected EBVs. It presents the available 

datasets and their adequacy for each EBV, but also the best practices in map 

accuracy assessments as recommended by the literature.  

 Section 5 presents upcoming Earth Observation satellite missions, and some 

emerging technologies that are relevant to tropical forest monitoring (e.g., 

unmanned aerial systems, hyperspectral technologies).  

                                           
14

 http://geobon.org/essential-biodiversity-variables/ebv-classes-2/ 

http://geobon.org/essential-biodiversity-variables/ebv-classes-2/
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 Section 6 presents the value and opportunities of community- and citizen-based 

approaches to tropical forest biodiversity monitoring through different successful 

experiences in developing countries. Guidelines for setting up a community or 

citizen-based project are provided.  

 Section 7 reports on existing regional biodiversity networks in the pan-tropical 

region, and provides guidelines on how to develop new networks.  

 Section 8 discusses how synergies between biodiversity monitoring and REDD+ can 

be made, both at the institutional and technical levels. The assets of coordinated 

actions are presented. Potential adverse effects discussed in the literature are 

reported also. Finally, opportunities for synergies in the field of Research and 

Development are introduced. 

The target audience of this sourcebook is composed of project managers and technical level 

practitioners in national and sub-national governmental forest agencies, academic 

institutions, NGOs involved in operational activities, or in capacity development initiatives, 

and large certified logging operators. We assume the audience to have a background on 

remote sensing and biodiversity observation techniques. By focusing on remote sensing-

based methods in relation to the development of EBVs relevant to tropical forests, this 

sourcebook is complementary to the sourcebook for biodiversity monitoring for REDD+ 

developed in 2014 by the Zoological Society of London (ZSL) in collaboration with the 

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) (Latham et al., 2014). The 

ZSL-GIZ sourcebook considers project managers as the target audience, and aims to define 

a cross-scale framework to help setting up a monitoring system in the context of REDD+ 

activities.  

 

1.3 FOREST DEFINITIONS  

The general forest types that are being covered in the sourcebook comprise the general 

tropical rainforest biome: 

 Lowland equatorial evergreen rain forests are forests that receive high rainfall 

(more than 2000 mm, annually) throughout the year. These forests occur in a belt 

around the equator, with the largest areas in the Amazon basin and the Mata 

Atlantica of South America, Central America, the Congo Basin of Central Africa, 

Indonesia, Southern India and Sri Lanka, Malaysia, and New Guinea. All lowland rain 

forests have a comparable forest structure with at least two tree layers, but the Latin 

American, the African and the Asian forests differ in characteristic tree species and 

species richness. The Latin American forests are, due to their long isolation, the most 

species rich with about 93,500 plant species, followed by the Asian rainforests with 

about 61,700 plant species and African rainforests with about 20,000 plants species. 

The African forests are much dryer than the other rain forests. The Asian forests are 

in general characterised by Dipterocarp species. The rain forests of New Guinea and 

Australia have Asian related species, but are different with many Marsipulami 

species. Finally, the Madagascar rain forests are different in composition from all 

other rain forests (Primark and Corlett, 2005). 

 Moist deciduous and semi-evergreen seasonal forests are tropical forests that 

receive overall some high rainfall with a warm summer wet season and a cooler 

winter dry season. Their trees drop some or all of their leaves during the winter dry 

season. These forests are found in parts of South America, in Central America and 
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around the Caribbean, in coastal West Africa, in parts of the Indian subcontinent 

such as the Ghats (Ramesh and Gurrukal, 2007), and across much of Indochina. 

 Montane rain forests and cloud forests, are found in the gradients between the 

lowland rainforests and the higher mountain areas (Bruijnzeel et al., 2010). The 

trees in these forests do not reach the height of those in the lowland rain forests, but 

are very rich in species. Depending on latitude, the lower limit of montane 

rainforests is generally between 400m and 2500m while the upper limit is about 

3500m. These forests are found in Central and South America from northern 

Argentina to middle range mountains along the Andes, in the Caribbean islands, in 

Central Africa east and west of the rain forest, and the largest extension is found in 

southern Asia, Malaysia, Indonesia and New Guiney.  

 Flooded forests, Philips et al. (1994) recognized several types of flooded forests 

that can be distinguished in permanently waterlogged forests, swamp forests, 

seasonally flooded swamp forests and floodplain forests that can be frequently or 

rarely flooded. The wetland forests are often very open and dynamic while the 

floodplain forests are more narrow, dense and related to river dynamics. 

  

Next to these there are  

 Dry forests (steppe forest, chaco, cerrado, Boswellia forests, miombo). The tropical 

dry forest biome is found around the tropical rain forest biome. In the Americas it is 

found in large parts of Mexico, in Latin America east of the Amazon forest, in the 

Cerrado and Caatinga and in the south in the Chaco. In Africa, dry forests are found 

in the Sahel zone from Mauretania to Ethiopia and Somalia, along the east coast in 

the zone of the Great Rift Valley (Boswellia forests and plantations), in southern 

Africa from Angola and Namibia to Mozambique (Miombo) (Campbell, 1996) and 

remnants on the west coast of Madagascar. In Asia its greatest distribution is in 

India, Myanmar and Thailand. Also in northern Australia there are extensive dry 

tropical forests dominated by Acacia and Cycas species. The climate is here more 

extreme than in the rain forest biome. Especially the precipitation has an extreme 

distribution between very wet and very dry seasons. In all these forests fire is a 

characteristic feature and most trees have adaptations to regular fires. Many of these 

forests generally occur on geologically old, nutrient-poor soils. Cerrado forests have 

the same kind of tree species diversity as the rain forests and are rich in fruits 

(Bridgewater, 2004). The shrub layer is variable in density and composition. The 

ground cover varies from a dense coarse grass growth to a sparse cover of herbs 

and small grasses. They transcend to shrub and steppe grasslands in the dryer 

regions.  

 Mangrove forest: Mangrove forests occur in all tropical and subtropical tidal areas 

of the world. They are extensive in Asia where they occur from Taiwan to Sri Lanka 

including all the ASEAN countries, Bangladesh, India and Pakistan. There are 

extensive mangroves on the shores of the Arabian peninsula and along the Red Sea, 

In Africa they are found on the Kenyan and Madagascar coasts and along the coast 

from Mauretania to Cameroon. In the Americas they occur in Florida and along the 

west coast of Mexico in the north, in the whole of the Caribbean, along the Brazilian 

northern coast and in the Pacific coast of Colombia. In Australian region they occur in 

New Guinea on the eastern and northern coast as well as on many of the islands in 

the Pacific Ocean. Following the Indian Ocean tsunami of 2004, the protective role of 

mangroves from natural disasters have become more widely realized (Giri et al., 

2015). Mangroves are vulnerable, however, as they are linear vegetation zones 

between a dynamic ocean and land. In the last decades there is a yearly loss of 

about 2% of the Mangrove forests (Valiela et al., 2001). 
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Monitoring changes in these different tropical forest types requires different approaches as 

these forest types differ in characteristics such as height, density, greenness, patchiness, 

shape, species diversity, and spectral responses. All these aspects should be taken into 

account when developing methods to observe status and monitor changes in these forests. 

As an example, while patchiness can be considered as an inherent characteristic of dry 

forests, it can be considered as an expression of negative impact when it occurs in 

mangrove forests. Similarly, changes in extensive rain forests will be expressed in different 

ways from changes in cloud forests. The monitoring methods described in the source book 

will be differentiated depending on the different tropical forest types described above. 
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2 MONITORING KEY EBVS WITH REMOTE SENSING 

Miguel Fernández, German Centre for Integrative Biodiversity Research, Leipzig, Germany 

Mike Gill, Group on Earth Observations – Biodiversity Observation Network 

Andrew Skidmore, University of Twente, The Netherlands 

2.1 INTRODUCTION – ESSENTIAL BIODIVERSITY 
VARIABLES 

The Tropics, are estimated to contain half of the world’s species while undergoing rapid and 

accelerating rates of development resulting in widespread documented declines on species 

population abundances (e.g. the tropical Living Planet Index shows a decline of 56 percent 

between 1970 and 2010; WWF 2014). Although the assumption of extensive losses across 

tropical areas has been widely cited, recent studies indicate that biodiversity change is 

much more complex (Dornelas et al. 2014; Vellend et al. 2013), with positive trends in 

some regions, driven by interacting and cumulative drivers making it difficult to accurately 

forecast and therefore respond to biodiversity change at the local scale (Beaudrot et al. 

2016). Considering the complex nature of biodiversity change and that biodiversity declines 

are most often best addressed through local conservation actions, it is imperative that 

effective, interoperable and scalable monitoring systems are implemented that can track 

biodiversity change to inform local development decisions to global assessments. 

In virtually all regions of the planet, biodiversity information is spatially and temporally 

limited, is not integrated due to widely varying methodologies and standards, and most 

existing observation systems are poorly funded and not well connected to policy needs. 

Furthermore, most funding mechanisms for biodiversity observation and research are not 

easily accessible to long-term monitoring projects, instead favouring projects that focus on 

producing new knowledge via experimentation. As a result, many observation systems do 

not make full use of existing data and knowledge, preferring instead to develop new 

monitoring efforts rather than to first build upon and advance current efforts. This limits our 

ability to make informed conservation decisions and, ironically, further undermines support 

for investing in much-needed long term biodiversity observation programs. 

However, the answer is not simply to produce more biodiversity data. More data alone will 

not lead to an improved understanding of biodiversity change that informs effective policy, 

conservation actions and forecasting. Existing efforts at the global and regional scale to 

integrate biodiversity data are often hampered by differences in methods, schemas, 

standards and protocols and in many cases, existing data is not easily accessed or 

translated. Considering the limited resources available for biodiversity observation and 

research, it is critical that monitoring efforts are not only integrated but also strategic in 

regards to the intended target. With all of this in mind, a harmonized framework for 

biodiversity observation and forecasting systems is required that facilitates integration, 

outputs and communication. In response, the Group on Earth Observations Biodiversity 

Observation Network (GEO BON) is developing the Essential Biodiversity Variables (Pereira 

et al. 2013). 

The EBVs were inspired by the Essential Climate Variables (ECVs) which guide the 

implementation of the Global Climate Observing System in a structured and coordinated 

manner. Analogous to the ECVs, the EBVs identify the most important variables for 

capturing major dimensions of biodiversity change, complementary to one another and to 
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other environmental change observation initiatives. EBVs can be used to help structure the 

relevant observation and information systems but they also provide an intermediate layer 

between primary observations and indicators, thus isolating indicators from changes in 

observation methods and technology (see Figure 2.1.1).  

 

Figure 2.1.1 EBV relationship to high level indicators 

 

2.1.1 What are Essential Biodiversity Variables? 

A key question that GEO BON addresses is how is biodiversity changing, i.e. what are the 

speed and direction (i.e. increasing or decreasing) of change across multiple spatial scales 

for the key dimensions of biodiversity? These quantities, based on in-situ or remotely 

sensed Earth observation measurements (EO), once harmonized, will allow us to work 

seamlessly with other disciplines. Once developed, EBVs have the potential to be integrated 

with other types of data to help us identify, evaluate and study the causal mechanisms of 

change in one or more dimensions of biodiversity, which in turn are necessary to, report, 

predict and manage biodiversity change from local to global scales. 

However, this definition still leaves us with two problems: What do we consider as the key 

dimensions of biodiversity? And what are the spatio-temporal scales at which it makes 

sense to measure change at each of these dimensions? These are not simple questions and 

the answers may vary depending on the objectives and the audience. To conceptualize the 

key dimensions of biodiversity and the most appropriate spatial and temporal scales, we 

adopted a series of guiding concepts that allow us to refine, frame and direct the idea of 

Essential Biodiversity Variables. In general, it is well accepted that the key dimensions of 

biodiversity can be grouped into four flexible sometimes overlapping categories: genetic, 

taxonomic, functional, and structural diversity. These key dimensions of biodiversity can be 

measured at different spatial scales (e.g., global, regional and local scale), which can also 

be defined depending on what is the most dominant process (e.g., extinctions, speciation, 

migration, colonization, inter- and intra-specific species interactions) as well as consider 

different combinations of biological organization (e.g., genes, species, populations, 

ecosystems). These equally important categories leave us with a multidimensional matrix 

where each component and/or resulting combination has the potential to become an EBV.  

Also, very important, is that EBVs should be independent from attribution. In other words, 

the reasons behind the change should not be part of the EBV metric per-se. For example, an 

EBV focused on trends in Net Primary Productivity should not also try to explain the causes 

behind the change. 

With this framework, GEO BON, as a result of a consensus process among experts, proposes 

a list of EBV classes and EBV candidates (http://geobon.org/essential-biodiversity-

variables/ebv-classes-2/) to provide a reference for the minimum set of essential 

measurements that can help capture the major dimensions of biodiversity change. 

EBVs should align well with the general needs of policy and decision-making offering robust 

computations that can help populate the indicators to assess progress towards the 2020 

Aichi Targets and contribute to other initiatives such as the IPBES Regional Assessments. 

However, policy can change over short periods of time and indicators that are tailored too 

precisely to meet the demands of policy can quickly become irrelevant. One advantage of 

http://geobon.org/essential-biodiversity-variables/ebv-classes-2/
http://geobon.org/essential-biodiversity-variables/ebv-classes-2/
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EBVs is the distance in the degree of abstraction that separates them from indicators that 

shield them from changes in policy, making them valuable over longer periods of time and 

flexible enough to populate a multitude of potential indicators and decision support tools 

operating at various scales (e.g. national and local scale indicators for decision-making, 

biodiversity scenario for supporting policy and management decisions). With this in mind, 

the EBV concept can be applied to structuring the approach for monitoring tropical 

biodiversity using remote sensing techniques. 

 

2.1.2 Tracking EBVs Using Remote Sensing 

The Strategic Plan for Biodiversity, 2011-2020 (https://www.cbd.int/sp/) outlines a series of 

targets for reducing the loss of biodiversity and addressing the underlying causes driving 

such loss. Whilst efforts are underway to better inform these targets through indicators, 

inadequacy of data limits our ability to confidently report on progress (or lack thereof). In 

some cases, remote sensing offers an opportunity to both achieve long-term global and 

continental scale coverage and indicate patterns in biodiversity loss, thereby facilitating 

effective conservation actions (Skidmore et al. 2015). Continual and rapid advances in 

sensor technology offer growing opportunities (e.g. monitoring individual tree species or 

animals using high spatial resolution imagery, or imaging spectroscopy for mapping plant 

function and structural attributes) for tracking biodiversity change, though in-situ (ground) 

data is needed to calibrate and validate the models and data products. However, a 

consistent approach is required to define and translate remotely sensed observation data 

into metrics (e.g. EBVs) relevant to biodiversity monitoring. For example, the definition 

used for a forest has direct implications in regard to how one measures and quantifies forest 

degradation (Skidmore et al. 2015). 

 

 

Table 2.1.2.1 Candidate EBVs that can be measured by remote sensing. * Spaceborne RS 

is increasingly used to map the distribution and abundance of particular species 

 

EBV	Class Candidate	RS-EBV

Species	populations Species	distribution*

Species	populations Species	abundance*

Species	traits Phenology	(e.g.,	leaf-on	and	leaf-off	dates;	peak	season)	

Species	traits Plant	traits	(e.g.,	specific	leaf	area,	leaf	nitrogen	content)	

Community	composition Taxonomic	diversity

Community	composition Functional	diversity

Ecosystem	function Productivity	(e.g.,	NPP,	LAI,	FAPAR)

Ecosystem	function Disturbance	regime	(e.g.,	fire	and	inundation)

Ecosystem	structure Habitat	structure	(e.g.,	height,	crown	cover	and	density)

Ecosystem	structure Ecosystem	extent	and	fragmentation	

Ecosystem		structure Ecosystem	composition	by	functional	type

https://www.cbd.int/sp/
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In this context, the following sections will introduce relevant EBVs for tracking biodiversity 

change in tropical forests and will explore how remote sensing techniques can be harnessed 

to support the development of these EBVs. From a larger list of EBVs that can capture 

biodiversity change using remote sensing techniques (see Table 2.1.2.1), the following 

sections focus on five examples: Vegetation Phenology, Net Primary Productivity, Ecosystem 

Extent and Fragmentation, Habitat Structure and Disturbance Regime. Some examples of 

remote sensing derived EBVs that can directly track forest structure and function include 

leaf area index (LAI) important for estimating growth potential; foliar N and chlorophyll has 

a significant role in ecosystem processes and functional aspects of biodiversity as a primary 

regulator for many leaf physiological processes; species occurrence is an important EBV for 

wildlife habitat assessment and effective natural resource management; primary 

productivity is the synthesis of plant organic compounds from atmospheric CO2 and can be 

measured using remote sensing; and habitat fragmentation is the process by which 

continuous broad areas of tropical forest is reduced to discontinuous patches and can also 

be estimated and measured using a series of satellite images over time. More 

methodological and technical information, using case study examples, is found in Section 4 

of the Sourcebook. 

 

2.1.3 Key references for Section 2.1 

Beaudrot L, Ahumada JA, O'Brien T, Alvarez-Loayza P, Boekee K, Campos-Arceiz A, et al. (2016) 

Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End 

Is Not in Sight. PLoS Biol 14(1): e1002357.  

Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., & Magurran, A. E. 

(2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 

344: 296-299. 

Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G, Scholes, R.J., Bruford, M.W., 

Brummitt, N., Butchart, S.H.M, Cardoso, C., Coops, N.C., Dulloo, E., Faith, D.P., Freyhof, J., 

Gregory, R.D., Heip, C., Höft, R., Hurtt, G., Jetz, W., Karp, D.S., McGeoch, M.A., Obura, D., 

Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J.P.W., Stuart, S.N., Turak, E., 

Walpole, M., Wegmann, M. (2013). Essential Biodiversity Variables. Science, 339: 277-8. 

Skidmore, A.K, Coops, N.C., Geller, G.N., Hansen, M., Lucas, R., Mücher, C.A., O’Connor, B., 

Paganini, M., Pereira, H.M., Schaepman, M.E., Turner, W., Wang, T. and Wegmann, M. 

(2015). Agree on biodiversity metrics to track from space. Nature, 523: 403-405. 

Vellend, Mark, Lander Baeten, Isla H. Myers-Smith, Sarah C. Elmendorf, Robin Beauséjour, Carissa 

D. Brown, Pieter De Frenne, Kris Verheyen, and Sonja Wipf. "Global meta-analysis reveals 

no net change in local-scale plant biodiversity over time." Proceedings of the National 

Academy of Sciences 110: 19456-19459. 

WWF. 2014. Living Planet Report 2014: species and spaces, people and places. [McLellan, R., 

Iyengar, L., Jeffries, B. and N. Oerlemans (Eds)]. WWF, Gland, Switzerland. 
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2.2 VEGETATION PHENOLOGY 

Wenquan Zhu, State Key Laboratory of Earth Surface Processes and Resource Ecology, 

Beijing Normal University, Beijing, China; Joint Center for Global Change Studies (JCGCS), 

Beijing, China; College of Resources Science and Technology, Beijing Normal University, 

Beijing, China.  

Guangsheng Chen, Environmental Sciences Division, Oak Ridge National Laboratory, Oak 

Ridge, TN. 

Daniel J. Hayes, Environmental Sciences Division, Oak Ridge National Laboratory, Oak 

Ridge, TN. 

Deqin Fan, College of Geoscience and Surveying Engineering, China University of Mining & 

Technology, Beijing, China.  

Nan Jiang, College of Resources Science and Technology, Beijing Normal University, Beijing, 

China. 

 

2.2.1 Concepts of vegetation phenology 

The International Biological Program defined phenology as “the study of the timing of 

recurrent biological events, the causes of their timing with regard to biotic and abiotic 

forces, and the interrelation among phases of the same or different species” (Lieth, 1974). 

Vegetation phenology refers to the periodic plant life cycle events controlled by biotic/abiotic 

factors (e.g., plant species, climate, hydrology, soil, etc.) (Rathcke and Lacey, 1985). 

Traditional definitions of vegetation phenometrics are related to the biological phenomena of 

specific organisms. These phenometrics usually refer to specific life cycle events such as 

budbreak, flowering, or leaf senescence using in-situ observations of individual plants or 

species. Comparing to the distinct phenophase transition of specific organisms from ground 

level observation, the process of observing land surface phenology (LSP) using remote 

sensing satellites is fundamentally different. There rarely have distinct phenophase 

transitions for satellite-derived phenometrics, such as the start-of-season (SOS) and end-

of-season (EOS) which are two common phenometrics derived from remote sensing time-

series data (Schwartz, 2013). 

Many abiotic (i.e., environmental factors) and biotic (e.g., plant species, age) factors 

influence the vegetation phenology. Phenology and its trends vary by geographic locations 

(i.e., latitude, longitude and altitude), climatic zones, and vegetation type. Phenology cycles 

and its variations may primarily be influenced by the potentially interacting effects of 

multiple environmental factors including sunlight/radiation, temperature and precipitation. 

Because vegetation phenology are very sensitive to small variations in climate, especially to 

temperature, phenological records can be a useful proxy and tools for reflecting historical 

climate changes; therefore, vegetation phenology becomes one of the most important 

indices for climate change studies (Menzel et al. 2006a; Schwartze et al. 2006; Yu et al., 

2010; Richardson et al., 2013; Yang et al., 2015). Shifts in vegetation phenology will also 

trigger the changes in ecosystem composition (e.g., biodiversity), structure (e.g., 

spatiotemporal pattern) and function (e.g., carbon uptake and net primary productivity), 

and thus alter the water, heat and carbon exchange among soil, vegetation and atmosphere 

systems (Piao et al., 2008; Richardson et al., 2010; Dragoni et al., 2011), which in turn 

affect regional and global climate system and augment climate change (Peñuelas et al., 

2009). Therefore, vegetation phenology also becomes a critical parameter for modelling 

land surface processes and vegetation dynamics (Cleland et al., 2007; Chen and Wang, 

2009).  
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2.2.2 Phenometrics 

To accurately and effectively reflect the phenological changes, many satellite-derived 

phenometrics (phenological variables) have been developed to quantify and separate 

different phenology stages (i.e., phenophases) from satellite-derived vegetation index (VI) 

time-series data (Figure 2.2.2.1; Table 2.2.2.1). Generally, satellite-derived phenometrics 

cover a suite of phenopahses including SOS and EOS, length of season, seasonal amplitude, 

and time-integrated series in terms of various VIs. Phenometrics can be derived from 

satellite data in several ways. Some researchers use complex mathematical models. Others 

apply threshold-based approaches that use either relative or pre-defined (global) reference 

values at which vegetative activity is assumed to begin.  

 

 
Figure 2.2.2.1 Example of phenometrics extracted from a seasonal normalized difference 

vegetation index (NDVI) curve. Redraw of (Jönsson & Eklundh, 2004; Wessels et al., 2011). 

(a) Start of season (SOS), (b) End of season (EOS), (c) Length of season (LENGTH), (d) 

Start of seasonal peak (SOP), (e) End of seasonal peak (EOP), (f) Top level (TOP), (g) 

Seasonal amplitude (AMP), (h) Base level (BASE) (i) Small seasonal integral (SI), (j) Large 

seasonal integral (LI). See Table 1 for details. 
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Table 2.2.2.1 Definitions of phenometrics shown in Figure 1, after (Jönsson & Eklundh, 

2004; Wessels et al., 2011). 

 

Phenology metrics Productivity metrics 

a. SOS –increase to 20% of seasonal 

amplitude as measured from the left 

minima of curve 

f. Top level (TOP) – average between 

NDVI values of SOP and EOP 

b. EOS – decrease to 20% of seasonal 

amplitude as measured from the right 

minima of curve 

g. Seasonal amplitude (AMP) – difference 

between TOP and BASE  

c. LENGTH – length of time from SOS to 

EOS 

h. Base level (BASE) – average between 

NDVI values of SOS and EOS 

d. SOP – increase to 90% of seasonal 

amplitude as measured from the left 

minima of curve 

i. Small seasonal integral (SI) – integral 

of growing season calculated between 

the fitted function and the BASE 

e. EOP – decrease to 90% of seasonal 

amplitude as measured from the right 

minima of curve 

j. Large seasonal integral (LI) – integral 

of growing season calculated between 

the fitted function and the zero level 

 

2.2.3 Methods for monitoring vegetation phenology 

To date, vegetation phenology is observed by three typical approaches: in-situ observation, 

remote sensing monitoring and model simulation. 

In-situ observation is a traditional approach to monitor vegetation phenology. It refers to 

the observations of individual plants or species at fixed positions; therefore, in-situ 

observation mainly reflects the growth rhythm on individual level. Since it is easily operated 

and can get precise phenometrics on single plant or in small region, in-situ observation is 

still the most popular method for studies on the seasonal community structure changes 

(PhenoAlp Team, 2010). However, in-situ observations can hardly reflect the spatial 

distribution of vegetation phenology in large scale (Menzel et al., 2006b) due to the uneven 

distribution of stations (Wei et al., 2003), the deficiency of widely distributed data 

(Schwartz et al., 2006) and the limitation of spatial coverage. In recent years, phenology 

observation based on flux tower and digital camera has been developed progressively (Zhu 

et al., 2012; Ahrends et al., 2009; Richardson et al., 2007), and has built an bridge 

between in-situ observation and remote sensing monitoring. See section 4.2 for more 

information on in-situ data. 

Model simulation method can explore the temporal and spatial variation of vegetation 

phenology by building phenology model at individual and population level based on the 

physiological mechanisms of plant growth cycle. Phenology model quantitatively expounds 

the impacts of environmental factors (e.g., climate, hydrology, soil, etc.) on plant growth 

(Migliavacca et al., 2012), simulates vegetation phenology using these environmental 

factors, and further infers physiological mechanism of plants growth and environmental 

thresholds (Chuine et al., 2013; Chuine et al., 2004). Currently, the most often used 

phenology models can be divided into two categories: statistical and mechanism models. 

Statistical model is based on the statistical relation between phenophase and environmental 

factors; while mechanism model analyzes the causal relationship between biological process 

and environment factors using mathematical formulas and discovers the occurrence 

conditions of phenophase. Till now, all the available phenology models are built based on 

the ground-observed data and are rarely based on the satellite-derived phenometrics. 

Besides, most of these models simulate the phenology at plant species scale instead of 

community or ecosystem scales. See also chapters 4.2.2, 4.6.2, and 5.2.4 for more 

information on species mapping. 
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Using remote sensing to monitor vegetation phenology is mainly based on the sensor-

recorded spectral information of object according to the principle that everything in nature 

has its unique characteristic of emitted, reflected and absorbed electromagnetic radiation. 

Remote sensing method uses data gathered by satellite sensors that measure wavelengths 

of light absorbed and reflected by green plants. Certain pigments in plant leaf strongly 

absorb wavelengths of visible (red) light. The leaves themselves strongly reflect 

wavelengths of near-infrared light, which is invisible to human eyes. As a plant canopy 

changes from early spring growth to late-season maturity and senescence, these reflectance 

properties also change. Due to its ability to record large-scale information, satellite remote 

sensing can effectively represent the vegetation phenological patterns at regional, 

continental, even global scale (Reed and Brown, 2005). The satellite-derived phenometrics 

reflect the vegetation growing and seasonal changes of communities or ecosystems at pixel 

level, which is very different from ground-observed phenological events at single plant or 

species level (Dragoni et al., 2011; Chen and Wang, 2009). There are a large number of 

methods to identify vegetation phenology from satellite data, but none of them is applicable 

to all types of vegetation for all study regions. Each of them has its own advantages and 

disadvantages, and specifically aims to a particular condition (Chen and Wang, 2009; White 

et al., 2009). Therefore, the selection of remote sensing methods should be determined 

based on the specific study area, varied study periods, spatial resolution, satellite platform 

and atmospheric corrections, compositing schemes and vegetation types (White et al., 

2009). In addition, the parameterization and localization of the selected method should be 

accompanied with ground-observed phenological data. 

Based on remote sensing data properties, several vegetation indices (VIs) were created to 

quantify phenophases during past several decades, such as the NDVI, the ratio vegetation 

index (RVI), the enhanced vegetation index (EVI), etc. Among these indices, NDVI is one of 

the most widely used VIs. NDVI values range from +1.0 to -1.0. Areas of water, bare 

ground, or snow generally have very low NDVI values (usually < 0.1). Sparsely vegetated 

areas, such as woodlands, open-canopy shrublands and grasslands, generally have 

moderate NDVI values (0.1 - 0.5). High NDVI values (> 0.5) often imply denser vegetated 

areas, such as closed-canopy forests, shrublands, cropland and grassland. Figure 2.2.3.1 

demonstrates the filtered NDVI curves of typical vegetation types. Major differences across 

these vegetation types in the base level, top level (average between left and right 90% of 

curve), seasonal amplitude and width can be identified. Specifically, evergreen broadleaf 

forests had the largest seasonal width with smaller variations within a year; crops which 

ripe once a year, deciduous broadleaf forests, grasses, mixed forests and shrubs generally 

have one growing season within one year; crops can ripe two or three times a year in some 

regions and thus have two or three growth cycles within one year. Satellite-based methods 

can take advantage of the characteristics of these curves of VI time series and quantify the 

vegetation phenometrics. 

(a) Deciduous broadleaf forests (b) Deciduous coniferous forests 
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(c) Evergreen broadleaf forests  

(no or small seasonal variations) 

 

(c) Evergreen coniferous forests  

(no or small seasonal variations) 

 

(e) Tropical dry evergreen broadleaf 

forests 

(dry-wet season) 

 

(f) Tropical dry evergreen coniferous 

forests (dry-wet season) 

 

(g) Shrubs 

 

(h) Grassland 
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(i) Crops (ripe once a year) 

 

(j) Crops (ripe twice a year) 

Figure 2.2.3.1 Phenological curves as represented by NDVI time series of typical 

vegetation types 

The SOS and EOS are two most common phenometrics derived from remote sensing time-

series data. The definition of SOS/EOS depends on the specific phenology extraction method 

(Table 2.2.3.1). For example, for the double logistic fitting method (Zhang et al., 2003), 

SOS is defined as the Julian day of year (DOY) when it reaches the maximum rate of change 

in curvature of the fitted logistic function based on the growth part of the satellite-derived 

VI annual time-series curve, while for the global threshold method (Myneni et al., 1997), 

SOS is defined as the DOY when it reaches a specific threshold (e.g., 20%, 30% and 50%) 

of the seasonal amplitude in the growth part of the annual VI time-series curve.  

 

Table 2.2.3.1 Definitions of SOS/EOS for different phenology retrieving methods 

Method Definition of SOS/EOS 
References 

Threshold 

method 

Global 

threshold 

method 

SOS/EOS is defined 

as the DOY when 

NDVI curve crosses 

the threshold in an 

upward/downward 

phase. 

A fixed threshold 

Myneni et 

al., 1997; 

Lloyd, 1990 

Local 

threshold 

method 

Threshold is 

determined by the 

shape of NDVI 

curve 

Yu et al., 

2010; White 

et al., 1997 

Delayed moving 

average method 
 

SOS is defined as the DOY when the NDVI 

curve crosses the delayed/advanced 

moving average time series in the upward 

phase 

White et al., 

2009; Reed 

et al., 1994 

Function fitting 

method 

HANTS-FFT 
SOS is defined as the DOY with maximum 

increase on Fourier approximation of NDVI  

White et al., 

2009 

Asymmetric 

Gaussian 

function 

SOS/EOS is defined as the DOY when the 

asymmetric Gaussian approximation of 

NDVI curve crosses the local threshold in 

an upward/downward phase  

Jönsson and 

Eklundh, 

2002 

Double 

Gaussian 

function 

SOS/EOS is defined as the DOY when the 

Double Gaussian approximation of NDVI 

curve crosses the local threshold in an 

upward/downward phase 

Fan et al., 

2014 

Sixth-degree SOS/EOS is defined as the DOY when the Piao et al., 
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polynomial 

function 

sixth-degree polynomial approximation of 

NDVI curve crosses the local threshold in 

an upward/downward phase 

2006 

Double 

Logistic 

function 

SOS/EOS is defined as the DOY when the 

double logistic approximation of NDVI 

curve crosses the local threshold in an 

upward/downward phase 

Beck et al., 

2006; Fisher 

et al., 2007 

Piecewise 

Logistic 

function 

SOS/EOS is defined as the DOY when the 

maximum rate of change in curvature of 

the fitted logistic function based on the 

growth/senescence part of the satellite-

derived VI annual time-series curve is 

gotten 

Zhang et 

al., 2003 

 

2.2.4 Opportunities for using remote sensing to monitor vegetation phenology 

Existing remote sensing platforms  

At present, there exist many satellite sensors (e.g., NOAA/AVHRR, SPOT-VGT, MODIS, 

MERIS, etc.) to observe vegetation characteristics and retrieve VIs (e.g., NDVI and EVI) 

time series at multiple temporal and spatial scales (Table 2.2.4.1). The original satellite 

images for many sensors are daily collected, but the VI products are usually composites of 

the best pixels from consecutive days and turn to 10-day/15-day/monthly VI products. The 

longest available VI time series data is NOAA/AVHRR GIMMS NDVI3g data (Jiang et al., 

2013), which started from July 1981 to present. However, it shows a low spatial resolution 

(8 km) and thus has different vegetation types in one pixel. Therefore, it can represent the 

phenological changes on ecosystem level but difficult to interpret the physiological 

mechanisms of phenology changes. VI time series data derived from MODIS/MERIS have 

better spatial resolution of 250 m/300 m and are more suitable for monitoring phenological 

changes at population or community level, but they have relatively short time sequences, 

starting from February 2000 and May 2003, respectively. Besides the above datasets with 

moderate or low spatial resolutions, Landsat TM/ETM+/OLI has begun to be used in 

vegetation phenology monitoring due to its long time span and high spatial resolution 

(Melaas et al., 2013). However, these optical sensors are easily affected by the weather 

condition, such as cloud or rain, and generate low-quality data. Microwave remote sensing 

can overcome this shortcoming since it is not sensitive to bad weather, as Jones et al. 

(2011, 2012) successfully derived vegetation phenology using AMSR-E passive microwave 

data. See also sections 4.1 and 5.1 for complentary information on available and upcoming 

sensors. 
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Table 2.2.4.1 Overview of existing and potential remote sensing platforms for retrieving 

vegetation phenology 

 

EO data type Sensor Method 
Operational 

level 

References 

Optical 

Hyper-

spectral 

Hyperion  
Potential research 

value 

 

Hyperspectr

al Imaging 

Radiometer 

(HIS) 

 

Potential research 

value 

 

VHSR 

Landsat TM/ 

ETM+ 

Logistic 

function 

fitting 

Study on the leaf 

sprout and 

senescence of 

forests in 

southern New 

England during 

1984-2002  

Fisher et al., 

2006 

Landsat 

TM/ETM+ 

Logistic 

function 

fitting 

Study on the SOS 

and EOS of 

deciduous 

broadleaf forest in 

southern New 

England during 

1982-2011 

Melaas et al., 

2013 

Landsat TM 

Logistic 

function 

fitting 

Study on the 

vegetation 

phenology in 

Queensland, 

Australia during 

2003-2008 

Bhandari et 

al., 2012 

Moderate 

optical 

MODIS 

Double 

Logistic 

function 

fitting; 

Asymmetric 

Gaussian 

function 

fitting; 

Fourier 

analysis 

Study on the 

vegetation 

dynamic changes 

(including 

phenology) in 

northern 

Scandinavia 

during 2000-2004 

Beck et al., 

2006 

MODIS 

Logistic 

function 

fitting 

Study on the SOS 

and EOS of 

vegetation in New 

England during 

Zhang et al., 

2003 
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2000-2001 

MODIS 

Harmonic 

analysis and 

threshold 

method 

Study on the crop 

phenology in 

Japan in 2002 

Sakamoto et 

al., 2005 

ENVISAT 

MERIS 

Asymmetric 

Gaussian 

function 

fitting 

Study on the 

growing season 

length of 

vegetation in 

southern England 

during 2003-2007 

Boyda et al., 

2011 

ENVISAT 

MERIS 

Fourier 

analysis; 

Double 

Logistic 

function 

fitting; 

asymmetric 

Gaussian 

function 

fitting, 

Whittaker 

smoother 

Study on the SOS 

of vegetation in 

Indian 

subcontinent 

during 2004-2006  

Atkinson et 

al., 2012 

Moderate 

or coarse 

optical 

SPOT-VGT 

Dynamic 

threshold 

method 

Study on the SOS 

of vegetation and 

its changing trend 

in northern 

Eurasia during 

1982-2004  

Delbart et al., 

2006 

NOAA/AVHR

R GIMMS 

Threshold 

method 

based on the 

maximum 

NDVI ratio 

Study on the SOS 

of temperate 

vegetation and its 

changing trend in 

northern 

hemisphere 

during 1982-2008 

Jeong et al., 

2011 

NOAA/AVHR

R GIMMS 

Threshold 

method 

based on the 

maximum 

NDVI ratio 

Study on the SOS 

and EOS of 

temperate 

vegetation and 

their changing 

trend in China 

during 1982-1999 

Piao et al., 

2006 

NOAA/AVHR

R GIMMS 

Threshold 

method 

Study on the 

phenometrics of 

vegetation in 

eastern Canada 

White and 

Nemani, 2006 
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during 1982-2003  

Synthetic 

Aperture 

RADAR 

C-band 
RADARSAT-

2 

BBCH-scale 

(Biologische 

Bundesanstal

t, 

Bundessorten

amt und 

CHemische 

Industrie) 

Study on the rice 

phenology in 

Serbia and 

southern Spain in 

2009 and 2010 

(Lopez-

Sanchez et 

al., 2014) 

X-band 

SAR 

Polarimetry  

BCH-scale  

 

Study on the he 

rice phenology in 

Serbia and 

southern Spain in 

2009  

(Lopez-

Sanchez et 

al., 2012) 

AMSR-E 

vegetation 

optical depth 

(VOD) 

parameter 

Study on the SOS 

of vegetation in 

North America 

during 2004-2007 

(Jones et al., 

2012) 

 

 

Existing methods for retrieving phenometrics  

The satellite-derived VI time series can reflect the rhythm of plants growth, which makes it 

possible to identify the phenometrics using remote sensing data. Figure 2.2.4.1 

demonstrates the progress of identifying the SOS for different vegetation types with two 

general processes: reconstructing high-quality VI time-series data through noise removal 

(e.g., using a sixth-degree polynomial function or a Double Gaussian function to fit the 

original VI time series) and computing the phenometrics from the reconstructed data (e.g., 

using a local threshold to retrieve SOS/EOS). More specifically, phenometrics are estimated 

with the following steps: firstly, obtaining points in the NDVI curve when the date fits the 

green-up and defoliation periods according to the in-situ observations; secondly, 

recognizing the characteristics of SOS and EOS by analyzing the NDVI value and position 

(timing) in the curve of selected points, such as the points with the largest changing rate in 

curvature; lastly, using the above characteristics to identify the SOS and EOS for the other 

pixels for the same vegetation type. The right panel in Figure 2.2.4.1 showed the processes 

for distinguishing the SOS of tropical dry forests from dry season forests, where the SOS 

represents the start of flourishing season rather than growing season. 
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Figure 2.2.4.1 Schematic of retrieving phenometrics from remote sensing data 

At present, a large number of methods have been developed to derive vegetation phenology 

using different VI time-series data. These methods can be summarized as threshold 

method, moving average method and function fitting method (Table 2.2.3.1). 

Threshold method determines the SOS and EOS by setting a threshold value in the NDVI 

curve. This method is further divided into absolute threshold method (also called global 

threshold method) (Lloyd, 1990) and dynamic threshold method (also called local threshold 

method) (Jönsson and Eklundh, 2002). Global threshold uses a fixed threshold value 

regardless of its changes with time and region. For example, Lloyd (1990) used 

NOAA/AVHRR NDVI datasets and set 0.099 as the global threshold of SOS; Fischer (1994) 

derived the SOS and EOS using a pre-determined threshold as well. Global threshold 

method is effective in determining SOS and EOS at local scale, but not suitable for the 

regions with various soil and land cover types, while dynamic threshold method can 

overcome this limitation. The greenness of the vegetation is indexed by transforming the 

NDVI data into a NDVI ratio (range between 0 and 1) between the NDVI value at a given 

time and the minimum NDVI value in a certain time period, normalized by the total range of 

NDVI values during this period. For example, White et al. (2006) adopted the dynamic 

threshold method to identify the land surface phenology in the eastern Canada using the 

AVHRR NDVI data from 1982 to 2003 and predicted the short-term phenology changes. 

Delbart et al. (2006) used the dynamic threshold method along with the SPOT-VGT and 

NOAA/AVHRR NDVI data to study on the dates of vegetation green-up in northern Eurasia 

during 1982-2004. 

Moving average method determines the vegetation phenometrics based on the intersections 

between the original VI curve and the moving averaged curve. Reed et al. (1994) first 
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proposed the delayed moving average (DMA) method and extracted the phenometrics from 

AVHRR NDVI datasets, such as the green-up, length of season and senescence of crops, 

forests and grassland. The results proved the strong consistency between derived 

phenometrics and in-situ observations for various vegetation types. Duchemin et al. (1999) 

used the moving average method to monitor the germination and defoliation period of 

temperate deciduous forest. Schwartz et al. (2002) adopted three methods (i.e., DMA 

method, seasonal NDVI mid-point method and surface phenology simulation method) to 

study the SOS of deciduous forests and mixed forests in the mainland of the United States 

during 1990-1993 and 1995-1999, respectively, and found that the DMA method performed 

better than the other two. The DMA method can help to obtain reliable and stable results 

from NDVI time series for the regions with one growing season in a year, but fails in those 

with multiple growing seasons in a year or strongly influenced by rainfall. Several potential 

risks should be noticed when using the DMA method. The first green-up stage may not be 

recognized for the region with multiple growing seasons if the time interval is set too short 

(Hudson and Keatley, 2010); moreover, the detected green-up dates might be advanced if 

the study region is influenced by snow melting in the spring (Wu et al., 2008); finally, this 

method is sensitive to the setting of the window size.  

Function fitting method obtains the vegetation phenology based on the fitted VI time-series 

curve with S-shape functions, such as the polynomial function, logistic function, Fourier 

function and Gaussian function. Taking the logistic function as an example, NDVI time series 

is firstly fitted using the logistic function, and then the extreme curvature variation of the 

fitted curve can be defined as the phenophase transition (Zhang et al., 2003). Zhang et al. 

(2003) firstly proposed the logistic function fitting method and applied it to extract the date 

of green-up, maturation, senescence and dormancy of vegetation around the central New 

England. The logistic function fitting method reduces human interference since it needs no 

predefined threshold and data smoothing, but increases the risks of failure in fitting since 

the NDVI curves of different vegetation types are not all ideal regular S-curve, which leads 

to low detection precision (Cui, 2012). Harmonic analysis method uses Discrete Fourier 

Transform to approximate the NDVI time series by summation of harmonically periodic 

functions with various frequencies, and then extracts the land surface vegetation 

phenological information based on the harmonic characteristics (Zhang et al., 2004). Lin 

and Mo (2006) reconstructed NDVI timer series using the improved Fourier method and 

NOAA/AVHRR NDVI data in 1992, and utilized harmonic analysis to extract the 

phenometrics of various vegetation types in southern Hebei Province. Harmonic analysis has 

been proved to eliminate the noises in NDVI time series effectively, but the reconstructed 

curve is over-smoothed and deviates from the original curve, which will end in 

misrecognition of phenological characteristics (Liang et al., 2011). Moody et al. (2001) used 

discrete Fourier analysis method to calculate the phenometrics of vegetation in southern 

California. Jönssone et al. (2002) evaluated the SOS ad EOS of vegetation in Africa by using 

asymmetric Gaussian function method. Function fitting method may plunge a local 

extremum caused by inappropriate initialization and fail to get the global optimum value; 

meanwhile, parameter optimization is limited by numbers of points in VI series, which 

implies that the time resolution is an additional constraint for the precision of curve fitting 

(Hudson and Keatley, 2010). 

In addition to the above-mentioned 3 types of method, the derivative method combines 

derivations of VI time-series curve with other conditions or methods to define SOS/EOS as 

the DOY when the curve reaches a maximum/minimum in an upward /downward phase 

(Balzter et al., 2007; White et al., 1997). For example, Moulin et al. (1997) used the 

derivative method and empirical coefficient to evaluate the SOS and EOS of global 

vegetation. To avoid the influence of NDVI increasing caused by snow melting on monitoring 

vegetation phenology, Yu et al. (2003) proposed a method using a combination of derivative 

and threshold methods. They limited the range of change slope using the given thresholds 

and estimated the vegetation green-up dates in the eastern Central Asia. Balzter et al. 
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(2007) developed the “Camelback Phenology Algorithm”, which is based on the combination 

of derivative method and moving average method, and derived the SOS and EOS in the 

central and eastern Siberi. Sakamoto et al. (2005) defined vegetation green-up as the date 

at the point when MODIS EVI curve reaches the maximum and defined harvest time as the 

date at the point when the second derivative crosses zero and the first derivative turns from 

positive to negative. Maximum-slope method is effective for the crops ripping once a year, 

but the derived first harvest time will be delayed for the crops ripping twice a year. It is 

hard to judge whether the changes of derivation-derived vegetation phenology is significant 

or in a reasonable range, since the derivative method cannot analyze the errors. Meanwhile, 

the derivative method is appropriate to extract SOS and EOS when the VI curve has no 

sudden increase or decrease, especially when the datasets are contaminated by clouds 

(Hudson and Keatley, 2010). 

 

Available remote sensing products for phenology studies 

1) VI time series products 

A. NOAA/AVHRR GIMMS NDVI3g data. This dataset starts from July 1981 to present. It 

has a spatial resolution of 1/12 (or 0.0083) degree and a 15-day interval. The data 

were provided by NASA and can be freely downloaded at the Ecological Forecasting Lab 

website (http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/). 

B. SPOT-VGT S10 NDVI data. This dataset starts from April 1998 to present with 1 km 

spatial resolution and a 10-day interval. The image quality and the calibration accuracy 

of the products are monitored by the Image Quality Monitoring Centre (QIV) at CNES 

(Toulouse, France) and the data can be freely downloaded from the Flemish Institute for 

Technological Research (VITO, http://free.vgt.vito.be/). 

C. MODIS VI products (MOD13). This data can provide NDVI and EVI time series every 

16 days at 250 m resolution from April 2000 to present. The data is processed by the 

Earth Resources Observation and Science (EROS) Center and can be downloaded at 

Reverb (http://reverb.echo.nasa.gov/). 

D. eMODIS products. The data are produced only for the United States, including 

Continental United States and Alaska, at spatial resolutions of 250m/500m/1000m and 

7-day intervals from 2000 to present. The output layers of the data are NDVI, surface 

reflectance bands, quality and acquisition date. They are produced by USGS EROS 

Center based on the MODIS datasets and have no compatibility issues (e.g., file format, 

production latency, reprojection, etc.) with the MODIS datasets. The data is available at 

https://lta.cr.usgs.gov/emodis. 

E. ENVISAT-1 MERIS data. This data covers the period from March 2002 to April 2012. 

It has a spatial resolution of 300 m and a temporal resolution of 35 days. The data can 

be downloaded from the European Space Agency 

(https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat). 

2) Phenology products 

A. MODIS Land Cover Dynamics (MCD12Q2) Product. This data provides phenophase 

transition dates at 500 m spatial resolution from 2001 to present. The product is 

developed from a time series of the Enhanced Vegetation Index (EVI) (Huete et al., 

2002) calculated from the 8-day composited Normalized BRDF-Adjusted Reflectance 

data (MCD43A4). The phenometrics are derived according to the derivatives of 

piecewise logistic functions (Zhang et al., 2003, 2006). The dataset can be downloaded 

from Reverb (http://reverb.echo.nasa.gov/).  

B. MODIS for NACP (North American Carbon Program) Products. These data include 

Gap-Filled-Smoothed (GFS) Product and Phenology (PHN) Product. This Product 

http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/
http://free.vgt.vito.be/
http://reverb.echo.nasa.gov/
https://lta.cr.usgs.gov/emodis
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat
http://reverb.echo.nasa.gov/
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provides smoothed and gap-filled MODIS VI series using the TIMESAT software package 

(Jönsson and Eklundh, 2004) to fit the asymmetric Gaussian functions (Jönsson and 

Eklundh, 2002) from two different MODIS products: EVI/NDVI calculated from 

MOD09A2 and MOD09Q2, while LAI/FPAR derived from MCD15A2 (Gao et al., 2008). 

MODIS-for-NACP PHN Product provides phenometrics estimated from MODIS VIs from 

the two different MODIS products (Tan et al., 2011). These datasets are available at 

http://accweb.nascom.nasa.gov/index.html 

C. USFS ForWarn’s Phenology Products. They are MODIS-based national phenology 

datasets. These data are available under ForWarn Project. ForWarn is a near-real-time 

tracking system of vegetation changes across the United States, and it relies on daily 

eMODIS and MODIS satellite datasets. The phenology products include phenology 

derived products and phenology parameter products. These products are available from 

2003 to 2009 and can be downloaded from http://forwarn.forestthreats.org/ 

D. USGS Remote Sensing Phenology Products. These data are provided by the USGS 

Earth Resources Observation and Science (EROS) Center, including phenometrics like 

timing and NDVI value of start and end of season, the timing and NDVI value of the 

annual maximum, duration and amplitude of the growing season, and time-integrated 

NDVI. The products are derived from AVHRR and MODIS, respectively. These AVHRR 

phenometrics are the longest record available at 1 km from 1989 to present. These data 

are available at http://phenology.cr.usgs.gov/get_data_main.php 

 

Existing international phenological observation networks  

A. Chinese Phenological Observation Network (CPON), website: http://cpon.ac.cn/ 

B. European Phenology Network (EPN), website: 

http://www.dow.wau.nl/msa/epn/index.asp 

C. The UK network, website: http://www.naturescalendar.org.uk/  

D. USA National Phenology Network, website: https://www.usanpn.org/  

 

 

2.2.5 Issues and Challenges 

Remote sensing data quality and its pre-processing 

Satellite-based monitoring of vegetation phenology has a requirement for both higher 

temporal and spatial resolutions. Satellites, such as NOAA/AVHRR, SPOT-VGT and MODIS, 

can provide daily or even half-day (Terra/Aqua MODIS) records, but they have lower spatial 

resolution. For example, the spatial resolutions of NOAA/AVHRR, SPOT-VGT and MODIS are 

8 km, 1 km and 250 m, respectively. This results in difficulties in analyzing physiological 

mechanisms of phenology shifting when the study region contains various vegetation types. 

Remote sensing data with spatial resolution smaller than or equal to 30 m (such as Landsat 

data, IRS data, HJ data) have been widely used, but their revisiting periods are usually 

longer than 3 days (such as 3-5 days for HJ satellites, 16 days for Landsat series of 

satellite). Considering the impacts of bad weather, aerosol or other factors, numbers of high 

quality data within a year are extremely limited, which is hardly to meet the requirements 

of monitoring vegetation phenology. For the tropical region, the quality of remote sensing 

data based on optical sensors is challenged by the high moisture content and cloud cover, 

but microwave sensors can overcome these problems and show potential in monitoring 

vegetation phenology in this region.  

The quality of remote sensing data is also hindered by the solar elevation angle, satellite 

observation angle, cloud condition, atmospheric aerosols and other factors. Therefore, the 

VI time series obtained from satellite always contains tons of noises, which leads to 

difficulties in extracting phenological information from remote sensing images (Yu and 

http://accweb.nascom.nasa.gov/index.html
http://forwarn.forestthreats.org/
http://phenology.cr.usgs.gov/get_data_main.php
http://cpon.ac.cn/
http://www.dow.wau.nl/msa/epn/index.asp
http://www.naturescalendar.org.uk/
https://www.usanpn.org/
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Zhuang, 2006). To reduce these contaminations, most of the existing datasets (e.g. 

NOAA/AVHRR GIMSS NDVI3g, SPOT-VGT NDVI and MODIS VI time series) have been 

preprocessed and composited by implementing the Maximum Value Composite (MVC) 

(Holben, 1986) or Constrained-View Angle Maximum Value Composite (CVMVC), but lots of 

noises still remained (Huete et al., 2002). Cloud cover has the largest impact on VI products 

quality, especially under condition that all the dates for deriving remote sensing images are 

contaminated by cloud. Therefore, the noise-reduction should be conducted for these VI 

time series before the application.  

Plenty of noise-reduction methods have been developed for VI time series, such as the 

asymmetric Gaussian method (Jönsson and Eklundh, 2004), changing-weight filter method 

(Zhu et al., 2012), but none of them performs well under all situations (Song et al., 2011, 

Zhang, 2015). Using a time series of daily EVI2 (two band enhanced vegetation index) from 

AVHRR long term data record (LTDR) (1982–1999), Zhang (2015) developed a hybrid 

piecewise logistic model (HPLM) to reconstruct a global dataset of spatially and temporally 

consistent and continuous daily VI. Verifications indicated that the HPLM algorithm is 

reliable and consistent and can be applied for the reconstruction of EVI/NDVI from AVHRR, 

MODIS and VIIRS data globally. 

2.2.5.1 Uncertainties in retrieving methods 

The satellite-derived vegetation phenometrics retrieved with different methods showed large 

discrepancies. White et al. (2009) compared 10 SOS extraction methods and concluded that 

the average difference and standard deviation among the methods is ±60 days and ±20 

days, respectively; these extraction methods showed higher precision in the northern 

hemisphere at high latitudes than in the region with arid, tropical or Mediterranean climate. 

Mou et al. (2012) evaluated three kinds of widely used satellite-based methods (i.e., 

threshold method, moving average method and function fitting method) from two aspects: 

feasibility and accuracy, and drew conclusions that the dynamic threshold method 

performed best with the highest feasibility and accuracy; better performance was also 

observed for the first derivative method of the logistic fitting function; the global threshold 

method had the worst performance both in feasibility and accuracy. There are three reasons 

responsible for the large inconsistency among different methods. First, there is no obvious 

phenophase transitions in the phenometrics derived from remote sensor data, which is the 

aggregated result of phenological information from different plants; second, these retrieving 

methods are different in definitions and algorithms; third, most existing evaluations are 

based on the in-situ observed phenology, but there has no direct relationship between 

satellite-derived phenology (e.g., green-up, dormancy, etc.) and ground-observed 

phenology (e.g., plant spout, flowering, etc.).  

Moreover, the following reasons increase the challenge of extracting phenological metrics 

from remote sensing data for tropical forests: firstly, tropical forests have higher 

biodiversity level, which results in more hybrid information of various plants in one pixel in 

remote sensing image; secondly, vegetation in tropical forests has higher biomass and 

shows higher VI value, even in dry seasons; therefore, the VI curve changes little 

throughout a year (e.g., low amplitude in VI curve) and it is hard to identify phenological 

characteristics; thirdly, the phenological characteristics are not significant for tropical 

forests. 

2.2.5.2 Difficulties in validation 

The validation of the satellite-derived vegetation phenology is a difficult issue. High 

temporal-resolution satellite data are always with relative low spatial resolution, and also 

along with the influences from data quality, data pre-processing and phenology retrieving 

methods, which ultimately lead to the incompatibility between satellite-derived 
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phenometrics at pixel level and ground-observed phenological events at individual or 

species levels. Most of the existing studies adopt the in-situ observations to validate the 

satellite-derived phenometrics. Fisher et al. (2006) used in-situ observations to validate the 

phenometrics derived from Landsat and MODIS, and quantified the precision of the satellite-

derived phenometrics at the high (i.e., Landsat) and low spatial resolution (i.e., MODIS). 

They discovered that the average dates of satellite-derived phenology could reflect the 

statistical conversion from fine scale to coarse scale, and the spatial disparity caused by 

local micro-climate was the primary cause for the incompatibility between satellite-derived 

and ground-observed phenometrics; Yu et al. (2010) studied the spring vegetation 

phenology on Qinghai-Tibet Plateau by using NOAA/AVHRR NDVI data from 1982 to 2006. 

They evaluated the differences between ground-based observations and satellite-derived 

phenometrics according to two indicators: the mean absolute error (MAE) and the root 

mean square error (RMSE)．In the absence of enough in-situ observations, Chang et al. 

(2014) used standard differences to indirectly validate the sensor-based growing season 

according to the daily average temperature data derived from meteorological stations; while 

Zhang et al. (2013) identified the green-up dates of vegetation in Qinghai-Tibet Plateau 

based on three sensor datasets (i.e., NOAA/AVHRR GIMMS, SPOT-VGT, MODIS) and 

validated the results by comparing the trends between satellite-derived and ground-

observed phenology.  

Actually, there is no direct relation between satellite-derived phenology (e.g., green-up, 

dormancy, etc.) and ground-observed phenology (e.g., plant spout, flowering, etc.) since 

their scales (a pixel on sensor image vs. a single plant) and the observed values (spectral 

responses of vegetation vs. phenological events) are completely different (Fisher et al., 

2006, Schwartz et al., 2002). Therefore, the validation for the satellite-derived phenology 

should be based on the spatial-temporal trends rather than the specific dates between 

ground-observed phenological events and satellite-derived phenometrics. There needs to 

develop other methods to make a more explicit understanding of the linkages between 

remotely sensed phenology and ground-observed phenology. Liang et al. (2011) validated 

satellite phenology through intensive ground observation and landscape scaling in a mixed 

seasonal forest. Delbart et al. (2015) compared land surface phenology with leafing and 

flowering observations from the PlantWatch citizen network to explain the correlation with 

satellite-derived green-up.  

 

2.2.6 Potentials and applications of phenology studies in tropical forests 

The differences in phenometrics among tropical forests can be used to improve the 

classification of land cover types, biomes and bioclimatic zones. Tropical evergreen and 

deciduous (seasonal) forests have similar spectra in the wet seasons, but there is at least 

20% difference at the near infrared band in the dry seasons (Schwartz, 2013). This 

difference has been attributed to the seasonal variations in leaf phenology of deciduous 

forest. A significant portion of forest area could not be identified by the remote sensing 

images if only those images from dry seasons are used or do not consider leaf phenological 

changes, even using the higher spatial resolution remote sensors (e.g., < 30 meters). For 

example, dry deciduous forests may be misinterpreted as pasture or croplands if the remote 

sensing images are obtained during the dry seasons. Leaf losses of dry deciduous forests 

during dry seasons make the spectral signal of forest the same as the pasture or croplands. 

Therefore, the tropical deciduous forests have often been overlooked by many previous 

remote sensing analyses (Arroyo-Mora, 2002). 

Phenology can provide a new clue to monitor biological diversity in tropical forests because 

it can contribute to the identification of wet of dry forests. Two distinct seasons are divided 

to study phenology for tropical dry forests: dry season and wet season. In the northern 

hemisphere, dry season usually ranges from March to July, when 85-100% of the forest 

leaves may fall down. Soil moisture is the dominant factor for the timing of leaf onset and 
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offset, while the combined effects of ecosystem composition, topography and forest age 

structure determine the degree of deciduousness (Piperno and Pearsall, 1998; Lüttge, 

1997). In general, moist or wet forests have more species than Neotropical dry forests. 

Taking records in Costa Rica as an example, 430 species of woody plants have been 

documented in the wet forest of La Selva Biological Station (Hartshorn and Hammel, 1994), 

while only 160 species in dry forest of the Santa Rosa National Park (Kalacska et al., 2001). 

However, dry forests have more structural diversity (e.g., wood specific gravity) and 

physiological diversity (e.g., growth seasonality) than wet forests (Medina, 1995). 

Phenometrics are critical parameters of exploring the dynamics of ecological processes in 

tropical forests. Phenometrics can be used to parameterize the phenology model (Whitcraft 

et al., 2015). The phenological mechanism model parameterized with phenometrics can be 

further integrated with process-based models to study the impacts of climate change on 

ecosystem composition, structure and function (Tian et al., 2010; Weiss et al., 2014; Arora 

and Boer, 2005). The parameterized model can be also integrated with crop models to 

simulate crop growth process and forecast crop yields in tropics (Ruane et al., 2014; 

Kadiyala et al., 2015).  

Phenology change has a cascade effect on tropical forest ecosystems. Change or disruption 

of vegetation phenology may be reflected in the changes in interaction between plant 

population and animal function. Biotic factors (e.g., competition for pollinators or pollinator 

attraction) have been regarded as vital adaptive forces for vegetation phenological patterns 

in tropical region (Sakai et al., 1999; Lobo et al., 2003). Delayed or advanced flowering 

may reflect the behavior and visitation rate of pollinators. If changes happen over time in 

the flowering pattern of the plants which share pollinators in the same guild (Fleming, 

1988), competition will happen for the same pollinators, finally resulting in detrimental 

effects on the reproduction of plants and the ability of pollinators to obtain resources. For 

example, in the tropical dry forest of the Chamela-Cuixmala Biosphere Reserve in Mexico, 

trees in Bombacaceae family provided main resources to the nectarivorous bats 

Leptonycteris curasoae for eight months and Glossophaga soricina for six months. The two 

species of bats gathered on the same bombacaceous species every month (Stoner et al., 

2003). These sequential utilizations of bombacaceuos species by the bats happen to be the 

flowering time of the tree species. Some research data suggest that changes in flowering 

time (e.g., reduction of flower production) caused by habitat destruction may result in 

increased interspecific competition between bat species and may ultimately end in local 

extinction, especially for the endemic species in this dry tropical forest. Intraspecific 

variations in the frequency, duration, amplitude and synchrony of individual flowering 

phenology has been considered as the main influencing factor for tropical plant populations 

in both reproduction and genetic structure in disturbed habitats (Nason and Hamrick, 1997; 

Doligez and Joly, 1997). The fruiting time and seed predation behavior may affect the 

ecosystem in tropical forests. Then the habitat reduction and phenological changes will end 

in the species reduction of reproductive plants, the increasing negative impacts caused by 

endogamy, the quantity decreasing and quality declining of pollen, and the genetic 

variability lowing of the progeny (Cascante et al., 2002). Over time, finally, this may disturb 

the viability and establishment of plant populations.  

 

2.2.7 Activities of phenology monitoring in tropical forests 

Vegetation phenology in tropical forests has aroused wide interests for researchers in recent 

years (Table 2.2.7.1). At the South American Continent, Cho et al. (2010) utilized 

NOAA/AVHRR NDVI and Sea Surface Temperature (SST) data to study the influences of 

Atlantic SST on the vegetation greenness in Amazon during 1981-2001. They discovered a 

strong correlation between NDVI and SST during 1980s and 1990s. Additionally, NDVI in 

rainy season (from December to next February) during 1981-2001 lagged behind SST with 

strong correlation and the lag phase was 14 months. Saleska et al. (2007) extracted the 
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vegetation green-up dates using MODIS EVI data in 2005, and found that there was no 

significant drought-caused reduction in vegetation greenness as compared with the other 

years. Bradley et al. (2011) explored the relationship of vegetation phenology with surface 

radiation and precipitation in Amazon based on the MODIS EVI data from 2000 to 2006. 

Comparing with subtropical or tropical savannah, they found that Terra Firme forests 

showed weak but significant annual cycles, which mainly caused by the vegetation 

heterogeneity and nonsynchronous phenological events. Moreover, the region with 

significant annual radiation cycle accounted for 86% of the study region while the region 

with significant annual precipitation cycle accounted for 90%, but the two types of regions 

showed different spatial patterns in vegetation phenology. 

 

 

Table 2.2.7.1 Activities of phenology monitoring for tropical forests at different continents 

Continents Regions RS Activities 
Fieldwork 

activities 
Reference 

South 

America 
Amazon 

Study on the relationship 

between the greenness of 

vegetation and the sea 

surface temperature 

(SST) using NOAA/AVHRR 

NDVI and SST data during 

1981-2001. 

Combining with sea 

surface 

temperature data of 

Atlantic sea 

surface; No ground-

based validation. 

(Cho et al., 

2010) 

 Amazon 

Study on the vegetation 

phenology based on 

MODIS EVI data in 2005. 

Combining with 

precipitation data; 

No ground-based 

validation. 

(Saleska et 

al., 2007) 

 Amazon 

Study on the relationship 

between vegetation 

phenology and the 

surface radiation and 

precipitation using MODIS 

EVI data during 2000-

2006. 

Combining with 

vegetation map, 

radiation and 

precipitation data; 

Validating the 

phenology using 

the ground-based 

observation data  

(Bradley et 

al., 2011) 

North 

America 

Hawaiian 

Islands 

Study on the relationship 

between the leaf sprout 

date of tropical ecosystem 

and the precipitation 

based on the MODIS 

NDVI/EVI data during 

2000-2006 

Combining with 

precipitation data; 

No ground-based 

validation. 

(Park, 

2010) 

 
Hawaiian 

Islands 

Study on the dates of leaf 

sprout in tropical forests 

region of Hawaiian Islands 

and its asynchronous 

response to El Niño–

driven drought using 

MODIS NDVI data during 

Combining with 

precipitation and 

SST data; No 

ground-based 

validation. 

(Pau et al., 

2010) 
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2000-2009 

 
Oaxaca, 

Mexico 

Study on the start dates 

and length of season of 

vegetation using 

NOAA/AVHRR NDVI 

during 1997-2003 

Combining with 

precipitation data; 

No ground-based 

validation. 

(Gómez-

Mendoza et 

al., 2008) 

Africa 

savannas 

and 

woodland

s 

Study on the start dates 

of growing season in the 

savannah and woodland 

region using the MODIS 

datasets during 2000-

2011 

No ground-based 

validation. 

(Guan et 

al., 2014) 

Asia 

Uttara 

Kannada 

of India 

Study on the vegetation 

phenology and its 

response to climate 

change based on SPOT-

VGT NDVI data during 

1999-2007 

Combining with 

temperature and 

precipitation data; 

No ground-based 

validation. 

(Prabakara

n et al., 

2013) 

 India 

Study on the spatial 

pattern of phenology for 8 

species of forest and its 

response to climate 

change using 

NOAA/AVHRR NDVI data 

during 1990-2000 

Combining with 

precipitation data; 

No ground-based 

validation. 

(Prasad et 

al., 2007) 

 

Indian 

sub-

continent 

Study on the start dates 

of growing season of 

vegetation in Indian 

subcontinent using 

ENVISAT MERIS data 

during 2003-2007 

No ground-based 

validation. 

(Atkinson 

et al., 

2012) 

 China 

Study on the vegetation 

phenology and growing 

season of the forests 

using AVHRR NDVI data 

in 1995 and 1996 

the satellite-derived 

phenometrics 

correlated 

significantly with 

the ground 

observations  

(Luo et al., 

2002) 

 

At the North American Continent, Park (2010) analyzed the connection between leaf 

phenology and rainfall regimes in Hawaii tropical ecosystems by using MODIS NDVI/EVI 

data during 2000-2006, and concluded that the vegetation greenness kept fluctuating and 

the period of fluctuations showed a strong relationship with precipitation. They also made a 

comparison between leaf phenology and rainfall patterns and proved that the 

photosynthesis and seasonal rainfall cycle showed consistency in tropical ecosystems and 

inconsistency in humid forests. Pau et al. (2010) explored the response of leaf phenology to 

El Niño-driven drought in Hawaii tropical forests using MODIS NDVI data during 2000-2009, 

and discovered the asynchronous response of Hawaii forests (both tropical rain and dry 
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seasonal forests) to El Niño-driven drought and found that NDVI in dry seasonal forests 

showed stronger correlation with precipitation than that in rain forests. Gómez-Mendoza et 

al. (2008) studied the relationship between NDVI and precipitation using NOAA/AVHRR 

NDVI data during 1997-2003 and discovered a significant variation in SOS and length-of-

season among different years in Oaxaca, Mexico.  

At the African Continent, Guan et al. (2014) explored the impacts of land surface hydrology 

on vegetation phenology of savannah and woodland in Africa based on MODIS data during 

2000-2011. They stated that the rain season onset generally occurred before SOS and thus 

could be used to predict SOS in African savannah, while rain season onset occurred after 

SOS and leaf senescence period varied nonlinearly with tree fraction in African woodland.  

At the Asian Continent, Prabakaran et al. (2013) used SPOT-VGT NDVI data to derive the 

vegetation phenology and analyzed the response of vegetation phenology to climate change 

in Uttara Kannada of India during 1999-2007. They found that the phenological events of 

evergreen forests were earlier than those of dry deciduous forests, and discovered a 

negative relationship between the highest air temperature and SOS, a positive relationship 

between the highest temperature and defoliation dates and a positive relationship between 

precipitation and SOS. Prasad et al. (2007) studied the spatial pattern of vegetation 

phenology of eight types of forests in India using NOAA/AVHRR NDVI during 1990-2000, 

and analyzed its relationship with climate. They found that the evergreen forests had larger 

range between SOS and EOS (around on day 270). Besides, the vegetation greenness of 

different vegetation types showed different responses to climate change, but the average 

monthly NDVI were negatively related to temperature and positively related to precipitation. 

Atkinson et al. (2012) used four different methods to extract SOS in the Indian subcontinent 

based on ENVISAT MERIS data in the period 2003-2007, and discovered that the study 

results were consistent between the southwestern and the northeastern India. Luo et al. 

(2002) studied the growing season change of forests in China during 1995-1996 based on 

the AVHRR NDVI datasets, and proved the effectiveness of PhenLAI model in predicting the 

maximum LAI for most forest types. 
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2.3 NET PRIMARY PRODUCTIVITY  

2.3.1 Definition and relevance 

Terrestrial net primary productivity (NPP) is an indicator of the energy flow through 

ecosystems. It can be described as the net production of biomass over a specific time period 

(e.g., year), and measures the amount of carbon that is taken up by vegetation during 

photosynthesis minus the carbon released during plant respiration. This can be written as: 

NPP = GPP – Ra (2.1) 

where GPP is the gross primary productivity and Ra is the autotrophic respiration rate. The 

GPP measures the entire photosynthetic production of organic compounds in an ecosystem, 

and the autotrophic respiration indicates how much of that production is used to meet the 

energy needs for growth and maintenance of plant tissues. NPP is usually expressed in 

grams of carbon per square meter per year (gC/m2/yr).  

NPP is an important parameter for biodiversity assessment; areas with higher NPP generally 

host more plant and animal species, although this effect is most clearly observed when 

considering larger spatial scales (Costanza et al 2007; Field et al 2009; Chase 2010). 

Although at a regional basis, peak biodiversity is sometimes found to correlate with 

intermediate productivity levels (Oindo and Skidmore 2002; Said 2003), most evidence and 

ecological theories seem to point to an overall positive relationships between NPP and 

species richness (Gillman et al 2015). Given that tropical forests are high NPP ecosystems 

hosting a multitude of animal and plant species, drastic reduction of NPP in ecosystems, for 

example through climatic shifts or land use change (Huston 2005; Higgins 2007), may 

negatively affect species diversity. Tropical forests are subject to various human-induced 

changes aimed at harvesting timber and woodfuel, and forest conversions for agricultural or 

mining purposes. Monitoring NPP (among other variables) through time for these regions 

would help to understand the impact of these changes on biodiversity. 

 

2.3.2 Field measurements of net primary productivity 

NPP field measurements are crucial to evaluate the accuracy of spatio-temporal NPP 

assessments from remote sensing or models. Nonetheless, NPP cannot be directly measured 

in tropical forests. Two main approaches exist for estimating NPP in-situ: (1) the 

measurement of biomass and its changes over time, and (2) the measurement of carbon 

fluxes (Pan et al 2014). 

2.3.2.1 Biomass 

Field quantification of NPP is possible following NPP’s definition of the total new biomass 

produced over a given time interval. Nonetheless, the accurate quantification of new 

biomass in the field is cumbersome, because during the measurement interval 

transformations occur due to consumption (herbivory), decomposition, mortality, and 

leaching (Kloeppel et al 2007). To make this measurable, biomass needs to be split into 

various components, including aboveground and belowground biomass. For both 

components increments in live biomass and biomass losses need to be added to obtain an 

accurate measure of NPP (Clark et al 2001a). For aboveground biomass, biomass 

increments include net increase of wood (stems/branches) as well as green biomass 

(foliage). Losses include fine litter (leaves, twigs, fruits, flowers), consumption by 

herbivores, and leaching/volatility of organic compounds. Belowground NPP is comprised of 

net root increments, and root losses due to mortality, herbivory, root exudates, and export 



52 

 

of organics to symbionts. The root biomass is poorly understood, but varies widely 

depending on the ecosystems and species, varying between approximately 20-150% of the 

above ground biomass (Whittaker 1975; Albuquerque et al 2015). See also chapters 4.2.2, 

4.6.2, and 5.2.4 for more information on species mapping. 

A detailed description on how to measure or estimate each of these components can be 

found in Clark et al (2001a), Gower et al (1999), and Kloeppel et al (2007). Only very few 

studies have attempted to measure belowground biomass for forest ecosystems (for a 

review see: Tierney and Fahey 2007), and aboveground NPP (or ANPP) is mostly taken as 

the combination of aboveground biomass increment and fine litter only (Clark et al 2001b). 

In this section we focus on ANPP given that remote sensing can best contribute to this 

assessment. Two approaches exist for estimating ANPP: (1) area harvest, i.e. destructive 

sampling of all plant tissue, or (2) the use of allometric equations that relate wood volume 

to more easily-measurable parameters like stem diameter and tree height (Gower et al 

1999), with the wood volume being converted into biomass based on wood density (note 

that many allometric equations for biomass increment are based on destructive sampling). 

Due to the relative small NPP increment with respect to standing biomass, approach (1) is 

challenging for forests, but some key tropical forest biomass allometric equations are 

nonetheless based on such painstaking work (e.g. Chambers et al 2001; Basuki et al 2009). 

Approach (2) is feasible when implemented using permanent plots: in this case stem 

diameter and top height increments provide an estimate of biomass increase, that is, if 

appropriate allometric equations for the species within the plot are available from literature 

or, ideally, from harvested trees in the vicinity of the plot. There are examples of biomass 

increment and NPP being estimated using temporary plots being repeatedly measured in an 

area. 

In short, in-situ field estimates of NPP based on biomass measurements are challenging for 

tropical forests and large errors can remain if not all NPP components are accurately 

identified and measured. Field-based NPP estimates require rigorous sampling and 

measurements for different components and for at least two moments in time. Detailed 

studies at benchmark sites and a greater standardization of approaches is needed (Kloeppel 

et al 2007). Nonetheless, such techniques remain the ‘gold standard’ for validation and 

calibration of models based on flux tower or remote sensing measurements.  

2.3.2.2 Flux tower measurements 

Flux towers use the eddy covariance method to continuously measure the exchanges of 

CO2, water vapor, and energy between terrestrial ecosystems and the atmosphere 

(Baldocchi 2003). Globally over 450 flux towers are actively operating, the majority of which 

are located in North America and Europe. These are organized in the FLUXNET network of 

regional networks (http://fluxnet.ornl.gov/) (Baldocchi et al 2001). Flux towers measure the 

vertical turbulent fluxes. The upwind area that is sampled (“seen”) by eddy covariance 

measurements is called the flux footprint. Its size and shape varies with tower height, wind 

velocity, and canopy characteristics. Depending on these parameters, the typical 

contribution to the measured signal originates from few tens of meters up to several 

hundreds meters. The footprint can be described using the analytical model of Schuepp et 

al. (1990). CO2 exchange can be accurately measured at hourly to annual intervals 

particularly over flat terrain, stable environmental conditions, and homogeneous vegetation 

cover for an extended distance upwind (Baldocchi 2003).  

Although flux towers do not measure NPP, they can provide relevant and related quantities. 

In fact, the flux towers measure the net ecosystem exchange of CO2 (NEE) that can be 

directly converted into the NEP (Net Ecosystem Production), which is related to NPP as 

follows:  

http://fluxnet.ornl.gov/
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NEP = GPP – Re = GPP - Ra - Rh = NPP - Rh  (2.2) 

where Re is the ecosystem respiration that is composed of the autotropic respiration (Ra) 

and the is the heterotrophic respiration (Rh). Rh is the microbial decomposition of organic 

matter into CO2 by the soil and animals. Ecosystem respiration is largely modulated by 

meteorological conditions such as temperature and humidity. Night time flux 

measurements, representing Re as no photosynthesis occurs at night, are used to develop 

models to estimate Re as a function of the driving meteorological variables. Such models are 

in turn used to estimate GPP from NEP measurements during daylight (a process often 

referred to as partitioning; Reichstein et al 2005). In summary, although NPP cannot be 

directly estimated with flux measurements, GPP can be estimated and used as proxy (for 

instance using a fixed conversion factor compiled from literature review) when time 

consuming biometric measurements of NPP are not available. 

 

2.3.3 Remote sensing for estimating NPP 

Given that primary production can be partitioned into various space- and time-variant 

elements, a range of remote sensing techniques can potentially contribute to the 

assessment of NPP. The incorporation of remote sensing in light use efficiency models is the 

most widespread approach and forms the basis of an operational NPP product derived from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) (section 2.3.3.1). Another 

approach to estimate NPP is to construct direct empirical relationships between measured 

NPP and remote sensing-derived parameters like spectral vegetation indices (section 

2.3.3.2). Finally we provide an overview of an alternative approach of multi-temporal 

biomass assessment (section 2.3.3.3). For completeness, we note that remote sensing has 

also been incorporated into ecosystem process models that simulate ecological processes 

like photosynthesis and respiration. Such models, often referred to as land surface models 

(LSMs) describe the main governing processes of the exchange of energy and carbon 

between terrestrial ecosystems and the atmosphere. LSMs rely on a number of hypotheses 

and require a large parametrization that is often taken from a limited number of 

observations gathered at different scales (from plant organs to canopy scale) gathered 

under specific environmental conditions. Application of such models to large areas where 

input data and parametrization are often uncertain, typically leads to large uncertainty in 

GPP and NPP estimates. The assimilation of remote sensing observation is increasingly used 

to reduce such uncertainties (see for example Liang 2004). These ecosystem process 

models (or LSMs) are not discussed here, but for more information we refer the reader to 

Turner et al (2004). 

2.3.3.1 Light use efficiency models 

Light use efficiency (LUE) models, also called production efficiency models (PEM) are based 

on Monteith (1972) who found that vegetation dry matter productivity under unstressed 

conditions linearly relates to the incoming photosynthetically-active radiation (PAR) that is 

absorbed by green leaves. Based on this observation, GPP (or NPP, depending on how εmax 

is defined) can be expressed as: 

P = εmax x fAPAR x PAR x f(E) (2.3) 

where εmax is the maximum conversion efficiency of light energy into vegetation biomass 

under optimal conditions, fAPAR is the fraction of incoming PAR absorbed by leaves and f(E) 

are functions to describe the effect of environmental stress (such as water shortage and 

temperature limitation) on εmax. This equation forms the theoretical basis for many satellite-
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based estimates of NPP. A detailed overview and discussion on how remote sensing has 

been used as input for LUE models is found in Hilker et al (2008). Of note is that the εmax 

definition and consequently its estimated values can vary much among various models, 

depending on whether NPP or GPP is assessed, whether below-ground production is 

incorporated, whether total radiation or only PAR is considered, and moreover many models 

use εmax as a calibration parameter (Song et al 2013). Hence εmax values cannot readily be 

transferred between models. Despite this, because all LUE models capture the seasonal 

variation of fAPAR and meteorological variables, they all achieve a reasonably accurate 

assessment of productivity (Song et al 2013). Here we limit ourselves to describing briefly 

the operational MODIS NPP product (Running et al 2004) as an example of feeding satellite 

data into an LUE model. A more detailed description of the algorithm can be found in 

Heinsch et al (2003), although some changes to the product have been subsequently made. 

The MODIS MOD17 datasets consist of an 8-daily GPP and annual NPP product. The GPP 

product (MOD17A2) precisely follows the definition of equation 2.3. The elements are 

assessed as follows: 

 εmax varies with vegetation type. Biome-specific values for εmax are determined from 

the annual MODIS-based land cover product (MOD12Q1) and a biome parameter 

lookup table (BPLUT). The values in the BPLUT are first estimated from an ecosystem 

model, and then modified based on eddy flux measurements and NPP field 

measurements (Heinsch et al 2003). 

 fAPAR: in many models fAPAR is an empirical linear function of the normalized 

difference vegetation index (NDVI), but such functions are scene- and sensor-

dependent and also subject to saturation at high NDVI values. The current version of 

MOD17 takes fAPAR from the 1-km MOD15A2 fAPAR/LAI product (Zhao et al 2005), 

which is based on the biome-specific inversion of a canopy radiative transfer model 

using a look up table (Knyazikhin et al 1999).  

 PAR is obtained from NASA’s Data Assimilation Office (DAO). DAO combines surface 

weather observations with a global climate model to produce estimates of various 

parameters at a coarse resolution of 1° by 1.25°, including the incident shortwave 

solar radiation (Running et al 2004). The PAR fraction of this solar radiation is 

assumed to be 45 percent. 

 f(E) is split into two components for MOD17, i.e. a temperature and a water stress 

part. Both stresses can reduce εmax. While soil water stress is the most direct link to 

plant growth (Song et al 2013), the MODIS product approximates this using vapor 

pressure deficit (VPD). Both daily minimum temperature and VPD are obtained from 

the DAO (as above for PAR) and they are scaled as simple linear ramp functions 

between biome-specific minimum and maximum temperature and VPD values that 

allow reducing εmax for sub-optimal conditions.  

From the 8-daily GPP, the annual NPP is calculated as: 

NPP = ∑(GPP – Rlt) – Rg - Rm  (2.4) 

where the autotrophic respiration terms relate to daily maintenance respiration of leaves 

and fine roots (Rlt), annual growth respiration to construct leaves, fine roots, and new 

woody tissues (Rg), and maintenance respiration of live cells in woody tissues (Rm) (Running 

et al 2004). Daily Rlt is estimated using LAI (from MOD15A2), average temperature from the 

DAO, and five biome-specific leaf parameters contained in the BPLUT. The annual 

respiration terms (Rg and Rm) are obtained by first calculating live woody tissue 

maintenance respiration, and then estimating growth respiration costs for leaves, fine roots, 

and woody tissue using biome-specific parameters (BPLUT) values. This approach largely 
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relies on empirical findings that relate the annual leaf growth to the annual growth of other 

plant tissues.  

The principal validation source of the MOD17 product are flux tower measurements that are 

compared to a 7x7km2 sample of the MODIS product located around each tower (Turner et 

al 2006; Friend et al 2007).  

 

 

Figure 2.3.3.1.1: mean NPP of 2000-2009 from the MOD17 product (figure source: 

http://www.ntsg.umt.edu/project/modis)  

 

2.3.3.2 Remote sensing-based proxies of NPP 

The previous section shows that while the concept of LUE models is simple, the input data 

requirements and assumptions needed are nonetheless substantial and are based on coarse 

resolution (spatial and thematic) input parameters. For this reason, a large number of 

studies focussed on simpler proxies of primary productivity that require less modelling and 

input data; for example an approach that was piloted in the 1980s (Goward et al 1985). The 

majority of these use a growing season integration of spectral vegetation indices. Given the 

difficulty to estimate autotrophic respiration, and the fact that flux tower measurements 

give a more direct measure of GPP than NPP, the empirical relationships relating production 

to vegetation indices mostly focus on GPP rather than NPP. For example, Sims et al (2006) 

found good relationships with integrated MODIS EVI (enhanced vegetation index) and 

tower-based GPP. They later improved this relationship by incorporating MODIS land surface 

temperature to account for short-term GPP variation, which further improved accuracies 

especially for evergreen sites (Sims et al 2008). NPP could equally be derived from such an 

empirical approach as long as good field-estimates of NPP are available. Note that the 

assessment of the seasonal ‘start’ and ‘end’ is discussed in the remote-sensing based 

phenology assessment (section 2.2). 

http://www.ntsg.umt.edu/project/modis
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Figure 2.3.3.2.1: Illustration of seasonally-integrated spectral vegetation indices (here: 

NDVI) that is frequently used as proxy for primary production. Note that for moist tropical 

forests with limited seasonal variation the approach may not be effective. 

2.3.3.3 Assessment of biomass and its changes 

In addition to providing input to LUE models and seasonally-integrated vegetation indices, 

remote sensing has the capacity to provide relevant input to estimating NPP components 

(section 2.3.2.1). Even if not resulting in direct NPP estimates, biomass estimates are an 

important component of field-based NPP data. A variety of remote sensing techniques have 

been developed to accurately estimate biomass for tropical forests. In the past, 

international developments on the Reduced Emissions from Deforestation and Forest 

Degradation (REDD) have strengthened the need for such measurements as they require 

accurate estimates of forest carbon stocks and its changes (Gibbs et al 2007). For a detailed 

overview of this topic, we refer the reader to the REDD sourcebook by GOFC-GOLD, which is 

updated annually for each Conference of Parties of the UNFCCC (GOFC-GOLD 2016). Section 

2.3 of the REDD sourcebook focuses on the estimation of forest carbon stocks, while section 

2.10 reviews emerging remote sensing technologies for monitoring changes in forest area 

and carbon stocks. In addition the Remote Sensing Handbook contains a chapter 

summarizing recent progress in the estimations of above-ground biomass with remote 

sensing (Ni-Meister 2015). 
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2.4 ECOSYSTEM EXTENT AND FRAGMENTATION 

Mike Sayre, United States Geological Survey, USA 

Matthew Hansen, University of Maryland 

 

 

One of the candidate essential biodiversity variable (EBV) groups described in the seminal 

paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is 

distinguished from another EBV group which encompasses aspects of Ecosystem Function. 

While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary 

production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of 

biophysical properties of ecosystems that create biophysical environmental context, confer 

biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation 

EBV is one of the EBVs in the Ecosystem Structure EBV group. 

Ecosystems are understood to exist at multiple scales, from very large areas (macro-

ecosystems) like the Arctic tundra, for example, to something as small as a tree in an 

Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped 

across any geography of interest, whether that area of interest be a site, a nation, a region, 

a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is 

Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and 

geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem 

fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on 

the landscape. 

 

2.4.1 Ecosystems vs. Ecosystem Occurrences 

The overall extent of an ecosystem is the area encompassed by all of the occurrences of the 

ecosystem. Ecosystems rarely exist as large, homogenous, single polygon entities; they are 

more often composed of patches (occurrences) of repeating areas on the ground or in the 

water with similar ecosystem properties. An ecosystem is usually composed of many 

repeating occurrences of variable shapes and sizes, and the area or extent of the ecosystem 

overall is the sum of all the areas for each of the individual ecosystem occurrences.  

It is important to keep the distinction between area of occurrences and overall area of the 

ecosystem in mind when considering ecosystem extent and fragmentation. An analysis of 

any ecosystem property (size, condition, value, etc.) is usually derived from a geographic 

summation of the property across all of the ecosystem’s occurrences. This occurrence-based 

approach is fundamental in both raster and vector spatial analytical frameworks. To 

calculate ecosystem extent, the analyst simply selects all the raster (cells) or vector 

(polygons) occurrences of the ecosystem and calculates the sum of these occurrences as 

the total extent, or area, of the ecosystem. It is a straightforward analysis in any GIS on 

any ecosystems-related layer to select all of the occurrences of an ecosystem class and 

calculate a summed area. But while the calculation of ecosystem extent for the ecosystem 

classes in an ecosystems-based GIS layer is straightforward, ecosystem maps are still 

relatively uncommon, and proxies for ecosystems are frequently used. Thus, prior to 

assessing ecosystem extent, it is imperative that there is an understanding of the definition 

of ecosystems, the distinction between different ecosystem types, and the use of proxies 

(e.g. land cover) for ecosystems. 
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2.4.2 Ecosystems as Distinct Physical Environments and Associated Biota 

A terrestrial ecosystem (Figure 2.4.1) at any given point is a vertical integration of the 

atmospheric regime, the organisms, and the hydrogeomorphology of the surface and sub-

surface environments (Bailey, 1996), and its current state may have been influenced by 

former states and evolutionary history.  

 

 

Figure 2.4.1 – The vertical arrangement of the biophysical elements of ecosystem 

structure (Bailey, 1996). Reproduced with permission from Robert G. Bailey. 

 

By mapping and then spatially combining these structural elements of ecosystems, 

ecosystems can be geospatially delineated in a robust, standardized, and data-derived 

fashion. This is the principle behind the GEO (Group on Earth Observations – a consortium 

of nations working to advance  Earth observation for societal benefit) Global Ecosystem 

Mapping Initiative, which has produced a global terrestrial ecosystems map (Sayre et al., 

2014). The GEO Global Ecological Land Units resource is a standardized, raster-format, 

data-derived map of global terrestrial ecosystems at a 250 m spatial resolution. There are 

3,639 ELUs and the global distribution and extent of any individual ecosystem type is easily 

queried in a GIS as the sum of the area of all the raster cells in that type. As such, the 

ecosystem extent of the GEO global terrestrial ecosystems is known. Figure 2.4.2 below 

depicts the method for mapping the ecosystems by first mapping, and then spatially 
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integrating, the four principal elements of ecosystem structure (bioclimate, landforms, 

lithology, and land cover): 

 

 

Figure 2.4.2 – Global Ecological Land Units (ELUs) as mapped from a spatial combination 

of four primary elements of ecosystem structure: bioclimate, landform, lithology, and land 

cover. A total of 3,639 global terrestrial ecosystems were mapped, of which 544 are tropical 

forest ecosystems. 

 

For this particular ecosystem classification, which is globally comprehensive, and which 

exists at a relatively fine spatial resolution (250 m) for a global product, ecosystem extent is 

readily calculated in a simple GIS analysis. As such the global ELU represents a candidate 

datalayer for use in the EBV on ecosystem extent. However, the global ELUs are currently 

only available for one time period, the 2010 epoch. They represent, in essence, a baseline 

distribution of terrestrial ecosystems over a five year period centered on 2010. If the ELUs 

were developed for say 2000, 2005, 2010, and 2015, and were also modeled into the future 

for say 2020, 2025, 2030, etc., the change in ecosystem extent would be possible between 

different time periods. Change in ecosystem extent is the actual focus of the EBV, and in 

fact the emphasis on change in extent should be reflected in the title of the EBV as “Change 

in Ecosystem Extent”. Since the global ELUs discussed above are not currently available as a 

time series, there are some constraints against their application for determining change in 

ecosystem extent. 
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2.4.3 Land Cover as a Proxy for Ecosystems 

Due to a lack of availability of time series data on ecosystem extent, and also to the general 

lack of ecosystem maps in the first place, land cover is often used as a proxy for 

ecosystems. It is important to understand that land cover is an element of, rather than a 

proxy for, ecosystems, as shown in Figure 2.4.2 above. In fact, in the GEO ecosystem 

concept, land cover is intended as a proxy for vegetation, and vegetation is subsequently 

intended as a proxy for all biota. However, practically, land cover is often used as a proxy 

for ecosystems. This can lead to a situation where land cover is equated with ecosystems, 

even though land cover data may carry little or no information on climate regime, 

geomorphology, and substrate chemistry, all important elements of ecosystem structure. 

 

2.4.4 Land Cover Change – A Proxy Approach for Assessing Change in Ecosystem 

Extent 

When land cover is equated with ecosystems, change in ecosystem extent can be inferred 

from change in land cover extent. Because land cover data is typically derived from 

remotely-sensed imagery, it is often available as a time series, and lends itself well to 

analyses of change in extent of land cover classes (again, which are typically presented as 

ecosystem types). Change detection in land cover classes between two or more points in 

time requires that the same set of classes have been interpreted and mapped from imagery 

at each time point. After calculating land cover extents for the different time points, it is 

possible to determine 1) what changed?, 2) from what?, 3) to what?, and 4) the magnitude 

of the change. If the classification units have changed across different epochs because of 

new sensors or image processing algorithms, the new land cover classes need to be 

“crosswalked” back to the original classes prior to calculating change in land cover extent. 

 

2.4.5 Unspecified Change and Ecosystem Basemaps – A Proxy-Free Approach 

Another approach to assessing change in ecosystem extent which does not require use of a 

land cover proxy is to obtain a change map derived from image analysis of two images at 

different dates. The images can be compared for changes in spectral properties, and without 

classifying the spectral signatures into land cover classes, a change map can be produced 

which indicates where, on the ground, changes have occurred. A change map produced 

from comparison of differences in spectral properties across different dates presents only 

areas of unspecified change. It is not known what changed, or from what to what, but only 

that change has occurred in some area. The resulting map is a map of polygon or raster 

footprints indicating that change has occurred. This change map can then be spatially 

combined with an ecosystem basemap, such as the ELUs map, and the ecosystems which 

have experienced change can then be identified. While this approach is excellent at 

identifying places on the ground and ecosystem types which are experiencing change, and 

can help with monitoring of ecosystem condition, there is no information provided on the 

“new” state. As such, simple calculation of change in ecosystem extent by differencing 

ecosystem extent at time t0 and t1, is precluded. 

Advanced and accurate change detection approaches are now available for identifying 

change on the ground from analysis of spectral properties. One model, termed the 

Continuous Monitoring of Forest Disturbance Algorithm (CMFDA; Zhu et al., 2012), 

characterizes disturbance by flagging the number of times a pixel’s spectral resolution 

changes through a sequence of temporal images. Many images can be included in the 

assessment, evolving traditional “change pair” approaches into a “change stack” or data 

cube framework. Another model, the Breaks for Additive Season and Trend approach 



64 

 

(BFAST; Verbesselt et al., 2013) uses multiple images from an area to establish historical 

stability in variation of spectral properties, and then automates rapid identification of 

change in newly acquired imagery as significant departures from the historical baseline. 

These two approaches illustrate an increasing use of multi-temporal data cubes as the 

spatial data framework for detecting change in imagery, now possible due to technological 

improvements that permit the storage and analysis of “big data” resources. 

 

2.4.6 Ecosystem Fragmentation 

Fragmentation refers to the changing spatial pattern of the distribution of the occurrences of 

ecosystems (or land cover classes as a proxy for ecosystems). There may be a tendency 

over time for larger occurrences of an ecosystem to “fragment” into increasingly smaller and 

more numerous occurrences. This change in the original spatial pattern of the occurrences 

can be caused by both human (e.g. land conversion) and natural (e.g. fire) disturbances, 

and usually results in an overall reduction in the historical distribution (range) of the 

ecosystem. There are a number of ecological questions relating to the number, size, and 

landscape context of ecosystem occurrences as they influence ecosystem integrity. A 

general conclusion from this line of work is that a considerable reduction in historical 

ecosystem range, and fewer, smaller, more dispersed, and less connected occurrences 

reflect a loss of ecosystem integrity. This reasoning has become the basis for the 

development of IUCN’s recent program and effort to develop Ecosystem Red List Criteria 

(Keith et al., 2013). 

The analysis of fragmentation patterns and trends lends geographic specificity to the 

changes in ecosystem extent that are occurring. Assessing the overall change (often 

reduction) in the original ecosystem extent is important, but it is also important to 

understand whether that change is mostly on the periphery of occurrences, or in the 

interior, or both. Several different kinds of fragmentation (e.g. interior, edge, perforated, 

transitional, patch, etc.) have been identified (Ritters et al., 2000) and fragmentation 

analysis algorithms have been developed. The location of fragmentation-based change is 

important because ecological processes (productivity, nutrient cycling, water flux, etc.) may 

not be uniformly distributed in the occurrence. In a global analysis of forest fragmentation, 

Ritters et al. (2016) reported that a substantial loss of global forest cover from 2000 to 

2012 was also accompanied by a shift to a more fragmented condition, with important 

implications for managing ecological risk. See also sections 4.3 and 4.5 for more in-depth 

information and case studies on forest fragmentation and change monitoring. 

 

2.4.7 Forest Cover Change Monitoring with Global Forest Watch Products15 

As an important class of global ecosystems, and the ecosystem type upon which this 

sourcebook is focused, forest ecosystems have been increasingly studied with respect to 

carbon content and change in forest distributions from deforestation and reforestation. For 

the former, the GEO-commissioned Global Forest Observations Initiative (GFOI) has 

produced a rigorous set of best-practice monitoring, reporting, and verification (MRV) 

guidelines assessing forest carbon stocks and fluxes (GFOI Methods and Guidance 

Document (MGD) - https://www.reddcompass.org/download-the-mgd). Forests are also 

now being continuously monitored in an innovative global forest change initiative. Global 

Forest Watch (GFW - http://www.globalforestwatch.org/) is an interactive online resource 

                                           
15

 Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the 
U.S. Government 

https://www.reddcompass.org/download-the-mgd
http://www.globalforestwatch.org/
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delivering accurate forest monitoring information to the public in order to improve forest 

management and conservation. Information on global forest extent and change is required 

to establish trends, to study drivers, and to assess the impacts and effectiveness of land use 

policies. Transparency is key to advancing such understanding and is a core principal of 

GFW. Anyone can use GFW tools to create custom maps, analyze forest trends, subscribe to 

alerts, or download data for their local area or the entire world. GFW data serve 

governments, the private sector, NGOs, journalists, universities, and the general public. 

These and other stakeholders may assess and advance forest land use based on a common 

set of facts provided by GFW. 

One of the principal data sets contributing to GFW’s mission is generated by the University 

of Maryland’s Global Land Analysis and Discovery research team. GLAD generates global-

scale tree cover extent and change data using time-series Landsat inputs. Annual updates 

on forest loss are generated at a 30m spatial resolution as are interim forest disturbance 

alerts for selected countries. Current inputs consist of Landsat 7 and 8 imagery, totaling 

over 250,000 scenes per year. Landsat data from the United States Geological Survey are 

acquired globally, are available free of charge and feature robust geometric and radiometric 

pre-processing. Sentinel 2 data from the European Space Agency have similar data policies 

and processing, and will be streamed with Landsat in advancing GFW global forest 

monitoring products.  

To implement global forest monitoring methods, knowledge of the regional variation of 

forest change dynamics is required, from forest types such as primary intact to secondary 

regrowth or woodlands, to causal factors such as mechanical clearing and fires, to scale of 

change such as large agro-industrial and smallholder clearings, to post-clearing land uses 

including agriculture and forestry. For example, mapping of the Brazilian Amazon is 

comparatively simple as the majority of clearing occurs within primary forests, consists of 

large scale clearings, and results in deforestation, i.e. forests are replaced with non-forest 

land uses. For most other regions in the tropics, the circumstances for monitoring differ. In 

the Congo Basin, forest loss consists of small-scale swidden agricultural and selective 

logging, with a majority of disturbances within secondary regrown forests. In Insular 

Southeast Asia, forests are cleared and replaced with timber plantations and palm estates, 

and the majority of change occurs within established forest land uses. GFW’s methods and 

products aim to account for the complexity of these dynamics in providing a globally 

consistent, locally relevant record forest extent and change. 

 

2.4.8 Ecosystem Extent and Fragmentation – Summary of Issues 

1. The calculation of change in ecosystem extent or fragmentation is technologically 

straightforward as a software-based differencing of ecosystem extent at different 

time periods. 

2. The spatial analytical units to be used in these assessments, however, is not 

straightforward, due to a general lack of ecosystem maps. When maps of ecosystem 

occurrences do exist, they may not exist in a time series format which allows 

calculation of change in extent by differencing between time periods. 

3. Land cover is often used as a proxy for ecosystems as it is 1) derived from remotely-

sensed imagery, and 2) is often available in a time series. However, it must be 

remembered that land cover is actually an element of, rather than a proxy for, 

ecosystems. 

4. High resolution (250 m), data-derived, standardized global maps of ecosystem types 

(including tropical forest types) do exist as a 2010 epochal baseline, and can be used 

to monitor changes in global or local ecosystem extent for ~3600 ecosystem types. 
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See also sections 4.3 and 4.5 for more in-depth information and case studies on forest 

fragmentation and change monitoring. 
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2.5.1 Background 

In Skidmore et al. (2016) vegetation height is being mentioned as one of the remotely 

sensed (RS) EBV candidates (RS-EBVs) to support the measurement of the EBV ‘Ecosystem 

structure’, next to ecosystem distribution, fragmentation and land cover. While land cover is 

already provided as operational RS product since the eighties, vegetation height is currently 

the most challenging one, and subject of this chapter. Vegetation height can be measured 

directly or indirectly by specific RS sensors and could support the EBV ‘Ecosystem structure’ 

with very valuable information. Vegetation height is valuable information next to spectral 

information to identify specific ecosystem or vegetation types. Moreover, the regular 

mapping of vegetation height would help to identify processes such as shrub and tree 

encroachment. Noss (1990) describes a hierarchy concept for monitoring biodiversity. The 

different levels of information that can be considered for biodiversity and ecosystem studies 

are the compositional, structural and functional aspects at multiple levels of ecological 

complexity. Vegetation height is as such an important component of the structural aspect of 

ecological complexity. Bunce et al. (2013) emphasises the importance of habitat/vegetation 

structure in the development of biodiversity policies in their own right and also 

demonstrates that there are strong links between vegetation structure and occurrence of 

species. Only a very small part of all species can be monitored while vegetation structure or 

habitats, as a flagship for many species, are easier to be monitored. As mentioned before, 

vegetation height is an important aspect as well in the definition of an ecosystem or habitat 

type. For instance, measuring forest degradation from space requires an agreed definition of 

a forest. Without a clear definition it is hard to compare forest distribution across large 

areas or across time. In the 1990s, the Food and Agriculture Organization of the United 

Nations (FAO) defined forests as ecosystems with a minimum of 10% canopy cover of trees 

or bamboo associated with wild flora. That definition was updated in 2005 with a minimum 

height of 5 meters for trees. Such shifts influence perceptions of where forests are, as well 

as where they used to be (Skidmore et al. 2016).  

To enable the measurement of vegetation height, remote sensing can play a crucial role and 

can become an important information source. Early applications pertained to the 

stereoscopic visual interpretation of aerial photography were a great step forward in 

vegetation monitoring. More recently, satellite imagery with a large range of spatial and 

temporal resolutions is available and enables applications for entire ecosystems. Traditional 

vegetation mapping methods that use visual interpretation of aerial photography and in 

combination with field surveys are, and have always been, working very well. But they are 

often also labour intensive and temporal frequencies are low, while policies are currently 

demanding higher temporal monitoring frequencies. Therefore, also terrain and nature 

managers are looking for alternatives that can support the mapping and monitoring of 

vegetation in more efficient ways.  

New developments in remote sensing such as the use of very high resolution (VHR) satellite 

imagery (passive optical as well RADAR active sensors) and LiDAR (Light Detection And 

Ranging) techniques, next to the use of UAV platforms (Unmanned Aerial Vehicles), can 
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help to speed up the process of vegetation mapping and monitoring. Nevertheless, som e of 

these methods are all relatively new and requires ecologists and remote sensing experts to 

collaborate closely and review the newest methods and technologies. Therefore this chapter 

discusses the potential use of passive optical sensors, RADAR and LiDAR technology for 

measuring vegetation height to support the monitoring of the EBV ‘ecosystem structure’. 

See also chapters 4.1 and 5.1 for more information on current and upcoming Earth 

observation missions, respectively. 

 

2.5.2 Passive sensor technology 

Several studies have employed passive satellite sensor data to estimate vegetation height. 

A wide variety of features have been extracted from passive sensors of spatial resolutions 

ranging from several centimetres to some tens of metres. For example, the panchromatic 

channel of Worldview-1 imagery with a 0.5 m spatial resolution has been used to estimate 

the height of pine forest stands (Mora et al. 2013). The stand median grey-level value and 

the 90% percentile of crown size distribution in combination with a k-nearest neighbour 

model provided the highest accuracies in terms of the coefficient of determination (R2 = 

0.69) among other predictors and models. Donoghue and Watt (2006) approximated mean 

vegetation height for plots of 0.02 ha using directly the mean reflectance values from 

spectral bands of Landsat Enhanced Thematic Mapper Plus (ETM+) and IKONOS images. In 

particular, a curvilinear regression model with a power function was used to model mean 

height as y = axb, where y represents the mean height in a plot, x the mean reflectance, 

and a and b are real values. They managed to estimate the height of Sitka spruce 

plantations with R2 values up to 0.87. Spectral indices from Landsat images, i.e. the 

Normalized Difference Water Index (NDWI) and the Optimized Soil Adjusted Vegetation 

Index (OSAVI), have been used to estimate the height of soybean and corn (Anderson et al. 

2004) using the biomass development of the crop as main variable. Ahmed et al. (2015) 

used Landsat time series to approximate the height of conifer and deciduous forest stands. 

A random forest approach proved more effective than a nonlinear multiple regression 

model, with Time Since Disturbance (TSD) being the most discriminatory predictor for 

young (< 30 years) stands and the Normalized Difference Vegetation Index (NDVI) and the 

Tasseled Cap transformation Angle (TCA) the best ones for mature (> 30 years) stands. In 

a recent study, Hansen et al. (2016) evaluated Landsat 7 and 8 data both individually and 

in synergy to estimate tree height in an extensive area in Sub-Saharan Africa. Spectral band 

reflectance and NDVI values from a large number of images from 2013 and 2014 were 

collected and sorted for each pixel. Values below the 10th and above the 90th percentiles, 

i.e. the 20% most extreme values, were discarded. The means for the remaining ranges of 

values for each image band as well as NDVI were used as predictors in a regression tree 

approach. Predictors from the integrated Landsat 7 and 8 datasets achieved the lowest 

Mean Absolute Error (MAE = 2.45 m) suggesting their combined used as well as the 

potential integration of Sentinel-2 data in future height estimation studies in case LiDAR 

information is not available or limited. Besides spectral information, texture features 

extracted from passive sensors have been correlated with vegetation height in several 

studies. Early studies used simple texture features for the estimation of coniferous tree 

height, such as the mean (Puhr and Donoghue 2000) and the standard deviation (Franklin 

et al. 1986) of reflectance values within a 3×3 pixel moving window. Similar features have 

been calculated from Satellite Pour l’Observation de la Terre 5 (SPOT-5) images and 

evaluated with different regression models in hardwood and coniferous forests (Wolter et al. 

2009). In another study involving SPOT-5 data, a number of first-order and second-order 

texture features were used together with spectral ones in a tropical forest area (Castillo-

Santiago et al. 2010). The variance of the near-infrared (NIR) band in a 9×9 pixel window 

and the reflectance values in NIR and mid-infrared (MIR) bands were selected as the best 
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predictors by a multiple linear regression model (R2 = 0.71). Similar second-order grey-

level co-occurrence matrix (GLCM) texture features from IKONOS imagery approximated 

the height of oak, beech, and spruce trees with accuracies up to R2 = 0.76 (Kayitakire et al. 

2006). Chen et al. (2011) used spectral and texture features as well as shadow fraction 

from a Quickbird image to compare pixel-based and object-based analysis under nonlinear 

regression. The experimental results from the object-based approach proved more accurate 

than the pixel-based ones. Instead of a regression problem, as in the previous approaches, 

vegetation height estimation has also been formulated as a classification problem. In an 

object-based approach, Petrou et al. (2015) calculated texture features based on local 

variance, entropy, and local binary patterns from WorldView-2 imagery. The features were 

used to classify heathland vegetation to six height classes appropriate for habitat studies, 

ranging from less than 5 cm to 40 m. Filter-based dimensionality reduction and a random 

forest classifier achieved classification accuracies over 90%, identifying the best performing 

subsets of features and decreasing the originally extracted features by around 97%.  

2.5.3 RADAR technology  

RADAR (Radio Detection And Ranging) is an important tool for detecting the structure and 

height of vegetation because of its ability to penetrate clouds, to provide a signal from the 

geometric properties of the vegetation and to generate images over large areas. The RADAR 

signal, backscatter and interferometric phase, depends on the physical structure and 

dielectric properties allowing an indirect measurement of vegetation structure. Short 

wavelength RADAR (X- and C-band; ~2 cm and ~6 cm wavelength) only partially 

penetrates the vegetation / forest canopy and mainly receives a signal from leaves and 

small branches. In contrast, long wavelength RADAR (L- and P-band; ~23 and ~60 cm 

wavelength) penetrates the vegetation / forest canopy and the signal is primarily caused by 

branches and trunks making it more suitable for mapping ecosystem structure and 

vegetation height (Ulaby et al. 1986; Woodhouse 2005). Since the early 1990s several 

studies have demonstrated the relationship between RADAR backscatter and vegetation 

structure and height (e.g. Dobson et al. 1995, Joshi et al., 2015). Interferometric SAR 

(InSAR) allows a more direct estimation of height and the vertical distribution of vegetation 

(Florian et al., 2006, Papathanassiou et al., 2008, Treuhaft and Sinqueira 2004). InSAR 

derives its sensitivity to vertical vegetation structure from the difference in signal of two 

RADAR receivers separated in space by a known distance, the so called ‘‘baseline’’. The 

difference between phases of the signal received at the two ends of the baseline can be 

translated into a topographic height. The topography measured from InSAR depends on the 

vegetation characteristics and the RADAR wavelength. Shorter wavelengths provide a signal 

relatively close to the canopy, while longer wavelength penetrate deeper into the canopy to 

the ground surface (Rosen et al., 2000). Varying InSAR methods exist to detect the forest 

height. Some studies compare InSAR height with independent measurements of the ground 

surface (e.g. national surface height maps) (Kellndorfer et al., 2004, Kellndorfer et al., 

2006; Simard et al., 2006). A second approach, uses the difference in between multiple 

wavelengths (e.g. X-band and P-band) to measure interferometric heights at two 

frequencies. Height is calculated as the difference in elevation between the two 

measurements (Wheeler and Hensley, 2000, Sexton et al., 2009). More explorative studies 

make use of polarimetric InSAR (PolInSAR) technology and use both interferometric height 

and correlation, along with multiple baselines and/or polarizations in retrieving information 

on the vertical distribution directly (Cloude and Papathanassiou, 1998; Treuhaft and 

Siqueira, 2000, Kugler et al., 2007, Garestier et al., 2008, Khati & Singh, 2015). Garestier 

et al. (2008) used a random volume over ground (RVoG) model to detect forest height from 

single-pass X-and PolInSAR data set using HH and HV channels over a sparse pine forest. 

Recently, Khati & Singh (2015) successfully demonstrated the use of space-borne PolInSAR 

data acquired by TerraSAR-X/TandDEM-X for tree height inversion at a pine forest site. The 

observed RMSE of 7.6 m relates to an underestimation of the tree heights that is caused by 
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the low penetration capabilities of X-band RADAR into to forest canopy. Garestier et al. 

(2008) and Wang et al. (2016) found that forest height inversion using short wavelength 

RADAR (X- and C-band) strongly depends on the forest density. While forest height 

inversion has been demonstrated at sparse boreal forest, the applicability at dense tropical 

forest is very limited. Long wavelength PolInSAR (L- and P-band) is much lesser affected, 

however, current provision of long-wavelength PolInSAR data is limited (Wang et al., 2016).  

 

2.5.4 LiDAR technology  

The following subsections deal with LiDAR technology from different platforms that all have 

their own merits for surveying, they concern respectively, manned and unmanned airborne, 

spaceborne and terrestrial liDAR scanning. 

 

2.5.4.1 Airborne LiDAR 

The use of airborne laser scanning dates back to the 1970s. However, their commercial 

development is traced back to the mid-1990s only. From the perspective of ecological 

research, LiDAR can be therefore considered as a relatively new technology (Carson et al. 

2004). LiDAR was originally introduced to generate more accurate digital elevation models 

(DEMs) (Evans et al. 2006) but has recently become an effective tool for natural resources 

applications (Akay et al. 2008). In the process of creating a DEM, only reflections from the 

ground level are used, and reflections from vegetation are considered redundant. Recent 

studies with LiDAR data have explored the possibilities to use these redundant vegetation 

reflections as a new source of geospatial data that can provide fine-grained information 

about the 3D physical structure of terrestrial and aquatic ecosystems (Geerling et al. 2007). 

This result can then be applied in forestry, ecological (habitat) mapping and vegetation 

monitoring (Hyde et al. 2005). Airborne LiDAR provided most of the applications so far, but 

Terrestrial LiDAR as well as spaceborne and UAV liDAR will provide more and more 

applications in the future, since they all have their own merits. Scopus16 presents very well 

the steep increase in publications per year between 2000 and 2015, respectively from 

around 10 in 2000 to 400 publications in 2015 (search “LiDAR AND vegetation”). LiDAR is 

an active remote sensing technique that measures the properties of emitted scattered light 

to determine the 3D coordinates (x, y, z) and other properties of a distant target (St-Onge 

2005; Mallet et al. 2009). To do so, the LiDAR instrument transmits laser pulses and 

calculates the distance from a target based on energy that is reflected from the target back 

to the instrument. The time for laser pulses to return back to the LiDAR sensor is used to 

calculate the distance to the target (Akay et al. 2008). LiDAR provides geometric data but 

also radiometric data, such as signal intensity, amplitude, and pulse angle (Hall et al. 2005; 

Evans et al. 2006). The laser camera measurements are combined with the platform’s 

position and altitude data - measured by a differential global positioning system (GPS) and 

an inertial navigation unit (INU) - identifying the position and elevation of each collected 

point (Wehr et al. 1999).The “xy” accuracy of the pulse center is typically 0.05–0.5 m, 

depending on the flying height. The accuracy in “z” is usually better than 0.2 m. Values 

range from 0.2 m to 1.0 m for flying heights of 1–5 km (Korpela et al. 2009). 

                                           
16

 www.scopus.com 
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Figure 2.5.4.1.1 Example of a LiDAR point cloud of an individual tree, visualized in 3D, as 

taken by an UAV LiDAR camera (Acquired with VUX-SYS camera mounted on RiCopter). The 

colours represent the multiple returns. The first returns are indicated indicated in green and 

represent leaves or ground, while blues colours represent more the internal woody skeleton 

or branches of the tree.  

So airborne LiDAR offers the possibility to collect structural information over larger spatial 

extents than could not be obtained by field surveys (Bradbury et al. 2005). LiDAR, in 

contrast to optical remote sensing techniques, can be expected to bridge the gap in 3D 

structural information, including canopy shape, number of vegetation layers and individual 

tree identification at the landscape scale (Graf et al. 2009).  

2.5.4.2 UAV LiDAR (drones) 

The use of unmanned airborne vehicles (UAVs) or so-called drones that can carry a LiDAR 

camera is a recent development. Recently, the use and adoption of UAVs as a flexible 

sensor platform for monitoring has evolved rapidly. Potential application domains are e.g. 

agriculture (phenotyping of individual plants), coastal monitoring, dikes, archaeology, 

corridor mapping (power lines, railway tracks, pipeline inspection), topography, 

geomorphology, and construction site monitoring (surveying urban environments), next to 

forestry and vegetation monitoring. Until recently it was not possible to have a LiDAR 

camera on a UAV since the cameras were too heavy to be carried by a UAV. Before, LiDAR 

measurements were made only from manned helicopters or airplanes. Attaching a LiDAR 

sensor to a moving UAV platform allows 3D mapping of larger surface areas. The big 

advantage of the use of a UAV is its flexibility to be used in space and time. The major 

limitation compared to manned airborne laser scanning is still limited in its areal coverage, 

not only due to the technological capabilities but also due to aviation regulations which does 

not allow in most cases to fly beyond line of sight. The use of unmanned LiDAR Scanning 

(ULS) has certainly advantages compared to the more static terrestrial laser scanning (TLS) 

or large-scale systems using manned platforms (Kooistra and Mücher, 2015, business plan 

prepared for evaluation within CAT Agrofood Program of Wageningen University and 

Research Centre): 

1. In general, the flexible agile deployment is an important asset of UAV data collection 

especially compared to satellites and manned aircrafts: for example LiDAR observations 

can be combined with additional camera observation to characterize both the structure 

and bio-chemistry of 3D objects; 
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2. Compared to TLS, UAV based LiDAR scanning allows the coverage of a much larger areal 

extent allowing to investigate relevant processes at local to regional scale (up to 100 ha 

per day); 

3. Compared to manned platforms, UAV based LiDAR scanning allows timing of data 

acquisition at critical moments and repeated measurements as part of monitoring 

experiments. The costs for manned platforms for monitoring is often too expensive. 

However only a limited number of manufacturers can provide at the moment such 

integrated UAV-LiDAR systems (ULS).  

2.5.4.3 Spaceborne LiDAR 

NASA’s GLAS instrument (Geoscience Laser Altimeter System) on the spaceborn ICESat 

platform (Ice, Cloud, and land Elevation satellite), launched on 12 January 2003, is a good 

example of the promising technique from space. Although the main objective of the GLAS 

instrument was to measure ice sheet elevations and changes in elevation through time, it 

was also very successful in measuring forest height. Amongst others Hayashia et al. (2013) 

showed that ICESat/GLAS data provides useful information on forest canopy height with an 

accuracy RMSE of 2.8 m. New advanced sensors to be launched in the next couple of years 

will provide increasingly accurate information on traits such as vegetation height and plant-

species characteristics. These include the NASA Global Ecosystem Dynamics Investigation 

Lidar (GEDI). The scientific goal of the GEDI is to characterize the effects of changing 

climate and land use on ecosystem structure and dynamics to enable radically improved 

quantification and understanding of the Earth's carbon cycle and biodiversity. Focused on 

tropical and temperate forests from its vantage point on the International Space Station 

(ISS), GEDI uses LiDAR to provide the first global, high-resolution observations of forest 

vertical structure (http://science.nasa.gov/missions/gedi/). 

2.5.4.4 Terrestrial LiDAR 

Terrestrial LiDAR, also called terrestrial laser scanning (TLS), is a ground-based remote 

sensing system that can measure 3D vegetation structure (i.e. the size and location of 

canopy elements) to centimetre or even millimetre accuracy and precision. Broad scale 

mapping based on remote sensing (satellite) data rarely, if ever, record the type of forest 

structural and dynamic information we require directly. Various simplifying assumptions, 

models and ancillary data are typically required to extract such information. At the fine 

(sub-ha plot) scale, it has also been difficult to incorporate rapid and robust assessment of 

accurate ground reference data of 3D forest structure into existing surveying and mapping 

strategies. This is in part due to the relative newness of such detailed structural data and 

the consequent lack of consistent methods for processing and analyzing these data in 

conjunction with more traditional survey and monitoring methods (Calders et al, 2015a).  

 

2.5.5  LiDAR applications supporting EBV ecosystem structure 

In this section some examples of LiDAR applications in vegetation monitoring are given, 

related to the EBV ecosystem structure. The first three subsections are on forest 

parameters, vegetation structure, and habitat classification, all based on airborne LiDAR. 

Real LiDAR monitoring applications are so far mainly limited to Terrestrial LiDAR, and these 

are described in last subsection.  

2.5.5.1 Forest structure 

Vegetation vertical structure is defined as the bottom to top configuration of above-ground 

vegetation including for example, canopy cover, tree and canopy height, vegetation layers, 

and biomass or volume (Bergen et al. 2008). LiDAR remote sensing being capable of 

providing both horizontal and vertical information at high spatial resolutions and vertical 

http://science.nasa.gov/missions/gedi/
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accuracies, allows forest attributes to be retrieved (Dubayah et al. 2000; Akay et al. 2008). 

Both discrete-return and full waveform devices have been used worldwide for characterizing 

forest structure (Lefsky et al. 2002a; Lim et al. 2003). These technologies have successfully 

been used to retrieve tree height (Jan 2005; Wang et al. 2008; Rosette et al. 2009; Heurich 

et al. 2008), above ground biomass and timber volumes (Calders et al., 2015;Means et al. 

2000; Lefsky et al. 2002b; Zimble et al. 2003; Patenaude et al. 2004; Zhao et al. 2009) and 

leaf area (Roberts et al. 2005;) across various ecosystems such as temperate (Anderson et 

al. 2006) or tropical forest (Drake et al. 2002). The combination of airborne LiDAR data with 

other optical remote sensing data also shows promising results for the estimation of forest 

structural characteristics (Coops et al. 2004), often better that when LiDAR data were used 

alone (Hudak et al. 2002; Wulder et al. 2003). In some case the intensity recorded by the 

LiDAR sensors is also used to measure tree metrics and vegetation structure (Lovell et al. 

2003; Hall et al. 2005; Evans et al. 2006; Weishampel et al. 2007).Those studies have 

demonstrated the ability of LiDAR techniques to measure vegetation height, and cover as 

well as more complex attributes of canopy structure. From those measurements, further 

analysis can be done related to the vegetation attributes and function. 

2.5.5.2 Vegetation structure 

Vegetation attributes and structure information generated from airborne LiDAR data have 

also applications beyond forestry and are of a great help for ecological functions 

understanding. These canopy metrics and structural data have been proven to be strong 

predictors of species richness for woodland birds in several studies (Vierling et al. 2008; 

Mason et al. 2003; Hill et al. 2005), even in difficult terrain (Hyde et al. 2005). 

Furthermore, the correlation between LiDAR-derived estimates of vegetation structure 

important to birds have been demonstrated in areas ranging from grasslands to forests 

(Bradbury et al. 2005; Hinsley et al. 2006). LiDAR have been also demonstrated to be able 

to identify differently structured habitat units and to quantify variation in vegetation 

structure within those units (Bradbury et al. 2005). LiDAR can also provide indication about 

territories and breeding success of several types of birds species (Bergen et al. 2008). Graf 

et al. (2009) concluded their study on the great potential offered by LiDAR for effective 

habitat monitoring and management of endangered species. In Korpela et al. (2009) the 

result obtained using LiDAR for the mire habitat classification accuracy were considered as 

surpassing earlier results with optical data. Some studies also highlighted that the result of 

habitat analysis obtained with LiDAR may be enhanced when used in combination with 

spectral data (Bergen et al. 2007; Clawges et al. 2008; Hyde et al. 2006). In view of those 

results, LiDAR remote sensing shows considerable efficacy for habitat 

mapping/characterization and wildlife management in fine detail across broad areas. It may 

replace many labour-intensive, field-based measurements, and can characterize habitat in 

novel ways (Vierling et al. 2008). Considering monitoring applications, the repeatable and 

high absolute “xyz” accuracy is advantageous since changes can be detected at submeter 

scales and the same measurement units can be monitored over time (Korpela et al. 2009). 

In that sense, LiDAR constitutes an efficient tool for short and long term monitoring of 

changes in surface structure and vegetation. For example, Wieshampel et al. (2007) used 

LiDAR measurements to monitor vegetation recovery after several disturbances and Calders 

et al (2015) used TLS for phenology monitoring. 

2.5.5.3 Habitat classification 

Studies conducted in order to classify vegetation or habitats using LiDAR showed that 

discrimination of some types was only possible based on vegetation height and density 

when they had similar spectral reflectances (Geerling et al. 2007; Geerling et al. 2009). 

LiDAR appeared to succeed as well in characterizing tree species with the canopy height as 

the strongest explanatory variables in the vegetation classification (Korpela et al. 2009; 

Geerling et al. 2007). The integration of spectral information coming from optical remote 



74 

 

sensing data and canopy height data generated from LiDAR into the classification has been 

demonstrated to produce an ecologically meaningful thematic product for a complex 

woodland environment (Hill et al. 2005). In most of the ecological studies based on LiDAR 

techniques, the intensity/amplitude is rarely used as it must be calibrated and corrected 

first (Mallet et al. 2009), even though it appears as a potential important factor for feature 

extraction or land cover classification. Antonarakis et al. (2008) demonstrate that the 

combination of intensity and elevation data from LiDAR point clouds can be enough to 

classify multiple land types using object-based classification method. Other studies using 

intensity values were conducted and their results imply that the intensity of the laser return 

signal can be used for classification purposes (Lim et al. 2003; Brennan et al. 2006; Korpela 

et al. 2009). A biodiversity observation system that is consistent and cost effective is 

desirable, but its development and implementation remains a significant challenge. Recent 

advances in Earth Observation (EO) allow inroads to the design of such a system (Mücher et 

al, 2015). Light Detection and Ranging (LiDAR) and Very High Resolution (VHR) multi-

spectral sensors are increasingly becoming available. These images provide opportunities 

for land cover and habitat mapping with a very high spatial resolution of 1 or 2 meters 

(mapping scale ~ 1:4000) and a high thematic differentiation in such a way that the derived 

maps meet the demand of end-users such as terrain and nature conservation managers. 

The launch of the multi-spectral Worldview-2 (WV-2) sensor with eight spectral bands 

(including the coastal, yellow and red edge as well as a second (overlapping) NIR channel) 

and a spatial resolution of 2 meters provides new opportunities for discrimination of land 

covers/habitats, hence it is preferred for adoption with the EODHaM system (Lucas et al, 

2015). A limitation of using optical imagery is that information on vegetation height cannot 

be retrieved with sufficient reliability unless relationships with, for example, textural 

measures are provided (Lucas et al, 2015). As such, LiDAR is complementary to optical EO 

data, since the technology allows for the measurement of vegetation structure (Mücher et 

al., 2013). LiDAR-derived canopy height models (CHM) represent the calculated height of 

the woody vegetation above the ground surface (in centimetres) for each individual grid 

cell. This is critical for the descriptions of woody life forms within the Food and Agricultural 

Organization (FAO) Land Cover Classification System (LCCS) taxonomy (di Gregorio and 

Jansen, 2005) and the General Habitat Category (GHC) system for habitat surveillance and 

monitoring (Bunce et al., 2008). Since vegetation physiognomy and structure are an 

important diagnostic criteria in the land cover as well as habitat classification system, we 

put a major emphasis on the exploitation of LiDAR data for CHM in combination with multi-

temporal and multi-spectral VHR satellite imagery. The CHM is a result of the difference in 

height between the calculated Digital Surface Model (DSM), indicating the top of the 

vegetation, and the Digital Terrain Model (DTM), indicating the ground surface. EODHaM 

requires in general several satellite images distributed over the growing season (a pre-peak 

flush image, a peak flush image, and a post-peak flush image) which allows the calculation 

of a wider range of spectral indices with a sufficient spatial detail. The imagery needs to be 

acquired for periods that are phenological optimal for the discrimination of land cover and 

habitat classes (Lucas et al., 2015). An important additional input in the EODHAM system 

was the CHM with a spatial resolution of 1 by 1 meter and vegetation height indicated in 

centimetres, as derived from the LiDAR multiple return data. It shows that the combination 

of LiDAR with VHR satellite imagery is a powerful tool for the identification of plant life forms 

and associated land covers due to the generic possibilities that it provides in combination 

with the EODHAM system for any site across the globe. Even though the validation is not 

showing the highest accuracies (Mücher et al, 2015). 

2.5.5.4 Forest Monitoring 

The potential of TLS for forest monitoring was first demonstrated more than a decade ago, 

but has not yet reached its full potential, for the reasons outlined above. Newnham et al. 
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(2015) & Anderson et al. (2015) provide a full review of the development of TLS as a forest 

measurement tool. 

 

 

Figure 1.5.5.4.1: Illustration of a 3D terrestrial in-situ laser scanner point cloud of a 

Maranthaceae forest in Lopé National Park located in central Gabon. The data were collected 

with a RIEGL VZ-400 LiDAR camera from 7 different scan locations. Coloured by height 

(blue = 0 m; red = 45 m).  

 

Terrestrial LiDAR sensors are usually tripod mounted and record single scans from a fixed 

location. As such, scans are affected by occlusion, i.e. the near objects in the forest can 

obscure objects further from the scanner. The effects of occlusion can be significantly 

reduced by obtaining data from multiple scan locations. Multiple single scans made at 

different locations can be co-registered (to within mm accuracy depending on instrument 

and environment) using high reflectivity targets that act as tie-points between different 

scans (see Figure 2.5.5.4.1). A range of scientific and commercial scanners are currently 

available. Whereas airborne LiDAR systems have been used in forest measurements since 

the mid-eighties (Nelson et al., 1984), the first commercial terrestrial laser scanners came 

to the market in the late 90s with instruments such as the RIEGL LMS Z210 and CYRAX 

2200. The first TLS instruments used a time-of-flight ranging principle, with phase-shift 

based ranging instruments following soon after. The commercial instruments were (and still 

are) generally developed for precision mapping and survey applications where hard targets 

(i.e. structurally continuous surfaces) dominate e.g. urban areas and/or mineral and 

petrochemical exploration. This has implications for their use in forest applications, where 

many laser hits are partial, and/or from softer targets (i.e. structurally fragmented or 

dispersed surfaces) with anisotropic reflecting surfaces such as leaves or needles and bark. 

Of the scientific (i.e. non-commercial) scanners, the Echidna Validation Instrument (EVI) 

was one of the first laser scanners specifically designed to monitor vegetation (Strahler et 

al., 2008). Commonly used commercial instruments include the RIEGL VZ-series, Leica C10 

and HDS7000, Optech ILRIS-HD and FARO Focus3D X 330 and Trimble TX8. Newnham et al. 

(2012) provide a detailed independent comparison between some commercial scanners and 

evaluated their performance for measuring vegetation structure. 
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2.5.6 Status and outlook 

Monitoring ecosystem structure can now be supported by a wide range of remote sensing 

techniques. The challenge to date is to support the biodiversity community with a global 

observing system that revolves around the monitoring of a set of agreed variables essential 

to the tracking of changes in biological diversity on Earth (Pettorelli, 2016), such as EBV 

ecosystem structure. To achieve this the remote sensing techniques available have to be 

exploited to a much wider range and should complement each other, so that large parts of 

the globe can be monitored in reality. LiDAR technique is a tremendously growing remote 

sensing technique that due to its absolute physical measurements of height and structure 

has an enormous potential for applications. As we have seen LiDAR instruments can be 

placed on many different platforms that all have their own merits, ranging from terrestrial 

to spaceborne LiDAR. Although the LiDAR instruments are still very expensive we see that 

prices are lowering due to its wide range of applications, and makes it also slowly affordable 

to mount on UAV platforms. For regular forest monitoring terrestrial LiDAR still has the best 

credits but will probably change with increasing use of UAV and spaceborne platforms. We 

have mainly focused on vegetation and more specifically on forest, but it should be stressed 

that the LiDAR technique has a wide range of applications from terrain, infrastructure and 

urban applications, to agriculture, archaeology, geology, bathometry, and many other 

domains. Spaceborne LiDAR is not yet well developed but planned satellite sensors as 

NASA’s GEDI show that this will change. Passive sensor data can be used in certain cases as 

alternatives of LiDAR data for vegetation height estimation. Although not as accurate as 

LiDAR overall, satellite passive sensors have provided high precision approximations of 

height and have been proven particularly useful in cases where LiDAR information was 

unavailable due to high cost or limited coverage. Several types of predictors have been 

derived from passive sensor imagery, including reflectance values, spectral indices, texture 

features, or even temporal and semantic-based information (e.g. time-since-disturbance 

features in multi-temporal imagery). ESA’s upcoming P-band RADAR ‘BIOMASS’ mission 

holds promises for accurate space-borne large-area estimation of vegetation structure and 

height. It is intended to derive vegetation structure and height using POLInSAR globally and 

at a spatial scale of 100-200 m (Scipal et al., 2010). Due to the long wavelength of ~60 cm 

a much reduced saturation and underestimation of forest height is expected when compared 

to results found for shorter wavelength RADAR (e.g. Garestier et al. 2008, Khati & Singh 

2015), even over dense tropical forests. Such variety of features is essential in creating 

non-redundant information between active and passive sensor data and improve height 

estimation. Experiments involving synergies of LiDAR, RADAR, and passive multispectral 

data have shown that fusion of data from different sensors can provide increased 

performance compared with single-sensor data (Hyde et al. 2006). Furthermore, passive 

optical imagery can indirectly complement LiDAR data in height estimation by spectrally 

distinguishing vegetation from ground and remove noisy LiDAR measurements from the 

background that deteriorate accuracy (Riaño et al. 2007). Finally, widely and freely 

available RADAR and passive optical RS data, think of for example SENTINEL 1 and 2, 

should be used in synergy with limited but highly accurate LiDAR measurements to increase 

the spatial coverage of vegetation height measurements. 
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2.6 DISTURBANCE REGIME 
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2.6.1 Background and ecological concept 

When disturbance occur in sequence over a long time period or be accumulative, they are 

defined as disturbance regime. GEOBON has pointed out their determinant roll on the 

ecosystem function, structure and composition. In this sense, disturbance regime belong to 

the ecosystem functioning variables classes in the EBV framework. It is important to precise 

that even if a disturbance occurs once (e.g. logging, fire) but others continue (e.g. livestock, 

plantations) and in consequence a new land cover/use is established, the set of 

disturbances can be seen like a chain reaction and be assessed as an entire disturbance 

regime instead of individual events. 

In general, disturbance is any relative discrete event in time that disrupts ecosystem 

structure, changes resources availability and micro/macro habitat conditions. They are 

related to the spatial and temporal dimensions (Pickett and White 1985). For that reason, 

ecological disturbance regimes have to be observed according with their own spatial-

temporal scale. Besides, they play an important roll in the ecosystem dynamics being a 

determining factor in the ecosystem maintaining and functioning (Turner et al. 2001). In 

this sense, disturbance creates a continuum dynamic that controls the establishment and 

rechange of individuals, as well as the succession dynamic of communities (Hobbs et al. 

2007). 

The ecosystem disturbance adaptation is based on their own resistance and resilience. The 

first one is the capacity to resist small alterations through time preserving structural and 

functional attributes under a stress regime, in other words it is the system capacity to resist 

displacement from its initial state. The second one refers to the recovery capability to return 

to an initial state after important disturbance. 

Some ecosystems are very resilient but their resistance is low when facing certain 

disturbance. As an example, the boreal forest is no resistance to fire but recover completely 

after some years (Thompson 2011). On the other hand, the dry forest is very resistance to 

disturbance regime because it has evolved within these conditions; however their resilience 

capacity is low. Thereby, it is important to take into account that the disturbance response 

and the stress causing it vary among forest types. Besides, it has been observed that more 

complex systems have higher capacity to absorb extreme fluctuations even though they 

fluctuate more against environmental changes (Hernández et al. 2002). 

When the ecosystem is adapted to the disturbance, it will be resilient and recover to its 

previous state. Complementary, new landscape patterns may be appeared that will also 

affect the disturbance respond. For example disturbance regime cause forest patchiness 

that lately facilitate or reduce the disturbance spread (Turner et al. 2001). On the other 

hand, when a disturbance occurs rarely or its magnitude or frequency increases, the 

changes could lead to a new ecosystem. Then, the ecosystem lost their resilience capacity 

and reaches an ecological tipping point or threshold, which drives to a new state with 

considerable, nonlinear, unpredictable and dramatic changes (Thompson 2011). Under this 

scenario, the species biodiversity is modified through chances in competitive interactions 

and successional trajectories (Noble & Slatyer 1980).  
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The causes of disturbance might be either natural or human made. Natural disturbance vary 

from frequent and small disturbance (e.g. falling trees) to large and very rare (e.g. 

glaciations). Initially, natural disturbance were closely related to the climatic conditions, 

weather patterns and hydrological regimes of the zone, those determined their occurrence, 

frequency and magnitude. Nowadays, from local to large scale human activities have altered 

the natural disturbance regimes cycles. From a worldwide perspective hurricanes or the 

ENSO phenomenon regularity have changed as well as the magnitude and the periods of 

rain, wind and drought (Overpeck, et al., 1990, Dale et al., 2001). At local scale, 

anthropogenic disturbance effects might be punctual but cumulative in larger scales. Most of 

the anthropogenic disturbance have an analogue natural disturbance, but their frequency 

magnitude and extension vary radically (Walker & Walker 1991).  

Three different phases can be considered for disturbance dynamics assessment. The first 

phase is related to pre-disturbance ecosystem state, which informs about the ecosystem 

conditions and antecedents that often are determinant factors on the disturbance effects 

(Figure 2.6.1). It could be seen like a base line but also contains the previous state of the 

system, including even slight recent changes that increase the ecosystem vulnerability. The 

second phase is the disturbance by itself; it should occur in short intervals of time (hours) 

usually when the origin is abiotic or longer periods of time (months, years) related to biotic 

causes like insects and disease outbreaks. In this way, monitoring programs and early 

warning systems make possible a well-timely disturbance detection. The last phase is post- 

disturbance which looks through the implications and synergies after the disturbance.  

Examples of related topics are resilience, plant succession, patch dynamics and land use 

change; detailed information is in subsection 2.6.4.  

Even though all disturbance assessment phases are included in Figure 2.6.1.1, the scope of 

this section is mainly the disturbance and post disturbance stages. 
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Figure 2.6.1.1 Remarks of pre-disturbance, disturbance and post-disturbance assessment 

phases. The thick solid line is the ideal disturbance assessment direction which could turn 

into a monitoring system. The round dotted line shows the aim of each phase. The dash dot 

line represent natural disturbance. The solid thin line is mainly a combination of natural and 

human made disturbance. The dash line shows strong disturbance usually anthropogenic 

that increase their impact in a climate change scenario. The blue boxes represent different 

ecosystem stages; the “Stage a” refers to a new stage close to the initial one. t0= it is a 

specific time before disturbance, t1=time of disturbance occurrence, t1+n=time of assessment 

of disturbance implications, tn+x=time required for an ecosystem to return to its initial state 

or close to it. 

 

After the disturbance, the ecosystem trajectory may have different effects on time and 

space. On the first scenario the ecosystem is capable to recover because it is adapted or the 

alteration in the environment was punctual and likely associated to natural causes. 

Conversely, on the second scenario the disturbance is chronic, it maintains through time 

and space driving the system to collapse and preventing them to recover, usually their 

origin is anthropic (Ceccon 2013) (see section 2.6.3). 

The observation and assessment of disturbance requires continuity in time. It may also be 

necessary to make observations at multiple spatial scales, i.e. to understand how certain 

phenomena observed on small scales may affects or could be observed in larger spatial 
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scales, where these processes have their own interactions and properties. Nevertheless, 

disturbances surveys from the ecology point of view, are manly planned at local scales. 

Additionally, large scale disturbances that occur rarely as volcanic eruption, large fire, 

flooding and storms, do not have proper dataset in time, then their ecological research is 

challenging and limited (Turner and Dale 1998). 

A list of descriptors to characterize and study disturbance regimes (Table 2.6.1.1) from the 

ecological point of view was proposed by Pickett and White (1985). Some of these 

descriptors could be measured by remote sensing within certain space and time limitations; 

but others require ground data. For example, fire and flooding require high temporal 

resolution to get real time data and information of its frequency. While logging occurs once 

in long time period, then imagery to describe spatial features accurately like distribution and 

area is mostly used. Other descriptors as synergism and return interval demand more 

resources; monitoring programs or modelling. 

Table 2.6.1.1 Definition of disturbance regime descriptors (Modified from Pickett and White 

1985) 

Descriptor Definition Remote sensing 

requirements 

Disturbance 

stage 

Distribution Spatial distribution, including 

relationship to geographic, 

topographic, environmental and 

community gradients 

Moderate/high 

spatial resolution 

Disturbance or 

post disturbance 

 

Frequency Mean number of events per time 

period 

Hyper temporal 

resolution 

Disturbance 

detection 

Area or size Disturbed areas: this can be 

expressed as e.g. area per event, 

area per time period, among others 

High / moderate 

spatial resolution 
Post disturbance 

Synergism Effects on the occurrence of other 

disturbance 

Monitoring 

program 
Post disturbance 

 

Return 

Interval 

Mean time between disturbance Monitoring 

program 

All stages 

Rotation 

Period 

Mean time needed to disturbance an 

area equivalent to the study area. 

The study area varies and has to be 

explicitly defined by the researchers 

Modelling NA 

Magnitude a) Physical force of the event per 

area per time 

b) Impact on the organism, 

community, or ecosystem 

It requires ground 

data 

 

Disturbance or 

post disturbance 

 

 

2.6.2 Disturbance regimes implications in tropical forest and remote sensing 

connotation  

 

Natural disturbance regime occurring in tropical forest are fire, flooding, droughts and 

landslides, and they vary within different forest types, e.g. humid forest, dry forest, 

mangroves. In general, ecosystems are adapted to natural disturbance occurrence within a 

certain periodicity which allow them to return to their pre disturbance state or even do not 

been altered. Species develop strategies or specific ecomorphological structures as a result 

of environmental changes caused by that event. For example, tropical dry forest vegetation 
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exhibit leaves loss, stomatal aperture at night, thick trunks, seed dormancy, thorns, and so 

on, due to stational drought (Castillo 2003). 

On flooded forested tropical areas, woody species have vegetative reproduction, high seed 

viability when are immersed in water, and radicular adaptations that make them resistant to 

this events (Piedade et al. 2010). It is important to highlight that swamp forest are water 

storage in the rainforest system, this condition make them host of biochemical process such 

as nitrogen turnover and methane emissions (Giafranco de Grandi et al 2000) which have to 

be considered on climate change research. The drainage of flooded forest or forested 

wetlands soils has serious implications as source of emissions that have to be incorporated 

as well as it is done with carbon stock loss (Brown et al 2008). 

In tropical savannahs and dry forest, fire is a natural disturbance. Although, it is also one of 

the most used human mechanisms to create openings and establish a new land use in all 

forest types. Fires operates at multiple scales, causes changes in forest structure, 

biodiversity, reduces the aboveground and belowground carbon stocks altering the carbon 

cycling patterns, modifies the soil conditions and hydrological regimes (Page et al 2013). 

All tropical forest types are vulnerable to the spread of exotic species, plagues and forest 

disease. Alike, they all are exposed to human disturbance promote by agriculture, logging, 

mining expansion, and hydrological alterations (e.g. roads, dams). Anthropogenic 

interventions take place in short time periods and reiteratively, being persistent and 

preventing the system to recover. Additionally, they are rapidly cumulative causing higher 

impacts. Table 2.6.2.1 contains a list of disturbance documented on the literature that 

occurred in tropical forest either by natural or anthropogenic causes.  

 

Table 2.6.2.1 List of disturbance by tropical forest types. N: Natural disturbance, A: 

Anthropogenic disturbance  

Disturbance 

Tropical forest type 

Dry 

Forest 

Humid 

forest 

in 

lowlands 

Humid 

forest 

in 

highlands 

Mangroves Gallery 

forest in 

savanna

hs 

Droughts N    N 

Floods  N N  N 

Landslides N N N N N 

Wind  N  N  

Water level  N  N N 

Fire N, A N, A    

Plagues and forest 

disease 

N    N 

Exotic species N, A N, A N, A N, A N, A 

Agriculture A A A A A 

Livestock A A A A A 

Logging A A A A A 

Mining  A A   

Hydrological 

alterations 

 A  A  



88 

 

The assessment of disturbance regime through remote sensing has turned into new 

possibilities of observation and data availability. Generally, the possibility of carrying out a 

systematic field data collection in large regions was rare or extremely expensive. The data 

obtained from satellite imagery, especially low and medium spatial resolution have the 

advantage of systematic land observation in large spatial scales, and more frequently 

(several times per year). These allow to measure not only structural (biomass, logging) but 

also seasonal changes (drought, flood) or other aspects associated to the forest 

disturbance. Even though, they do not have the precision that characterizes the field data. 

For that reason, the outcomes from remote sensing analysis have to be complemented with 

field data whenever possible. Ground data is a source of information to comprehend detailed 

local phenomena and allows a bottom-up scaling. Besides it is necessary to calibrate 

satellite data. In all cases, particularly for remote sensing, the results have to be 

understood within an ecological context providing guidelines for better management of 

natural and human disturbance, information required by stakeholders and decision making. 

 

2.6.3 An overview of remote sensing concepts and parameters used to derive 

disturbance regime 

In accordance to disturbance regimes attributes, particularly magnitude, frequency and 

persistence, it is possible to take advantage of different capacities of the remote sensors. 

For that, it is essential to take into consideration the concept of resolution, which means the 

sensor’s sensitivity to detect objects or phenomena on the  Earth’s surface and intrinsically 

determine the data quality and amount of information that is captured. In this way, the 

spatial, temporal, spectral and radiometric resolutions, as well as the response from active 

and passive sensors, have to be carefully evaluated when a disturbance regime is going to 

be assessed. They are key features in order to select a specific tool to observe and measure 

an object or ecological process. Some descriptors useful to determine the level of detail in 

imagery are the size of the area affected, the recurrence of the disturbance and the level of 

detail required on the imagery (Table 2.6.1.1). 

Usually, there is a trade-off between spatial and temporal resolution. Sensors that cover 

large areas with low spatial resolution have higher temporal resolution. Conversely, very 

high spatial resolution is scarce, expensive and hardily affordable for large area surveys. 

Figure 2.6.3.1 displays the number of sensors against spatial resolution, from coarse to very 

high.  

 

Figure 2.6.3.1 Number of satellite sensors against spatial resolution. 
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The spectral resolution also has an important role. It used to be that high spatial resolution 

sensors cover a limited range of the electromagnetic spectrum. In this sense, to gain spatial 

resolution data could imply less capacity of vegetation features detection that are observed 

in the infrared wavelengths range. However, this trend is changing with technology, 

nowadays launched or programmed satellites look up for higher spatial resolution with more 

convenient spectral capacities. Understanding the differences between resolution concepts 

and their implications, it is essential to properly select an adequate image type to identify a 

disturbance or design a successful monitoring program. 

Additionally, the active sensors have to be considered. Active and passive sensors detect 

and highlight different features properties, but also their capacities and limitations vary. For 

that reason, it is necessary to take into consideration the sensors observation capabilities 

with respect to the survey necessities; starting for their potential to register spatial features 

in disturbance regimes, their topographic and environmental limitations. See chapters 4.1 

and 5.1 for more information on current and upcoming Earth observation missions, 

respectively. 

After thinking over the imagery and satellite properties, it is necessary to introduce some 

parameters used to assess disturbance regime. A general approach consists in 

discriminating biotic and abiotic parameters. Biotic parameters refer to direct measurements 

of vegetation. Two examples are vegetation indexes and forest biomass. The often analysed 

indexes are EVI and NDVI, but there are other methods that used a higher number of 

spectral bands and classification techniques to assess the photosynthetic green vegetation 

pre and post disturbance. Parameters related to biomass measurements are stem volume, 

basal area, leaves density and canopy openness. Biomass estimations could be derived from 

optical imagery analysis but mainly from radar or airborne datasets, and even single dates 

comparison allows detection of changes (Langner et al. 2012). These parameters are also 

used in forest degradation disturbance assessment (Miettnen et al., 2014).  

Abiotic parameters are more related with the phenomena itself such as fire, water, or some 

implications in the land physical cover properties like temperature. Some abiotic parameters 

are soil and land surface temperature (LST), that have been demonstrated to be useful to 

assess forest loss due to their strong relation with vegetation. Wang et al. (2005) and 

Matricardi et al. (2010) found that the Modified Soil Adjusted Vegetation Index (MSAVI), 

which includes a soil factor, exposes the highest detection of deforestation and selective 

logging of very dense forest in Brazil. The MSAVI shown less saturation in dense forest, and 

has been well incorporated in linear mixture model to mark canopy fraction gaps. In the 

same way, Mildrexler et al. (2007) developed and tested a Disturbance Index (DI) that 

includes LST and EVI. The DI has been tested in Canada and US, but not in the tropics. 

Besides, features of the terrain also have effect on the disturbance intensity. Negron Juarez 

et al (2014) shown that wind speed and direction of tropical cyclones as well as the degree 

of exposure are altered by landforms calculated from the DEM. 

Looking individually to disturbance, one of the most extensively monitored is fire. A review 

of  Earth observation applications and programs related to fire is included in Secader et al 

(2014). Some of the most known programs are the MODIS Rapid Response System that 

provides information daily (https://earthdata.nasa.gov/data/near-real-time-data/rapid-

response), the ATRS World Fire Atlas which produces monthly global fire maps 

(http://due.esrin.esa.int/page_wfa.php), the Global Fire Forest Watch 

(http://fires.globalforestwatch.org/) convened by the World Resource Institute and the Fire 

Monitoring Tool released by JRC in 2013 oriented to ecological implication of fire in natural 

parks (http://firetool.jrc.ec.europa.eu/). 

Another disturbance regime commonly assessed is natural flooding which is associated to 

seasonality. Since 1990, the L-Band of JERS shows its capacity to penetrate through the 

canopy and generate a double-band return due to the sign interaction with the smooth 

https://earthdata.nasa.gov/data/near-real-time-data/rapid-response
https://earthdata.nasa.gov/data/near-real-time-data/rapid-response
http://due.esrin.esa.int/page_wfa.php
http://fires.globalforestwatch.org/
http://firetool.jrc.ec.europa.eu/
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water surface, trunks and branches (Hess et al. 1990, de Drandi et al. 2000). Similarly, the 

L-Band of Alos Palsar has been extensively used to detect and map swamp forest in the 

Amazons, Africa and Asia. Hoekman et al. (2010) included a flooded forest class map in the 

Borneo detected by L-Bands. In the same way, Arnesen et al. (2013) reported the efficiency 

of Alos L- Band, HH polarized ScanSAR mode data, to determine flood extent for multiple 

periods of the hydrological cycle. 

Disturbance like drought, plagues, diseases, exotic species spreads, selective logging and 

blow-downs, are used to be studied at studied at canopy, community and ecosystem level. 

Hence, they require high level of detail and are carried out at local scale. In these cases, 

high spatial resolution sensors are very suitable because they are capable to capture slight 

data differences with high spatial accuracy. For example, physiological trend and variance of 

vegetation and soil are identified by hyperspectral imagery, while LiDAR data generates 

structural profiles of the trees and relief features. In both cases, the detailed forest 

information improves the ecological understanding of the disturbance, and brings out keys 

and tools to its management. A few examples are below: 

 

 Drought stress of deciduous tropical forest was assessed by Bohlman (2008) in Panama. 

Data from four dry season and one wet season was captured by hyperspectral airborne 

at 1 m pixel size. The outcomes show a good interpretation of the green vegetation and 

non-photosynthetic vegetation (NPV) through a mixture spectral analysis (MSA). But 

also it was observed that the NPV value is similar to the soil spectral response. Hence 

NPV can be easily misclassify driving to incorrect detection of forest gaps, pastures and 

similar land covers. In this sense, calculation of carbon uptake, evapotranspiration and 

rainfall must include information of disturbance such as drought to improve their 

accuracy and their relation with phenology and biodiversity. Further, this study shows 

how tropical forest it is not a “invariant high leaf density system”. 

 Deutscher et al. 2013 used Cosmo SkyMed X-Band imagery and the SRTM (90 m) to 

map forest disturbance in Cameroon and Republic of Congo. The high resolution SAR 

data highlight canopy disturbance, specifically natural or man-made gaps, logging roads 

and skid trail through. Two developed methods were tested; the Height Variance 

Approach and the SRTM Difference Approach for 3D mapping. They both reach an 

overall accuracy above 75%. Nevertheless the methods performed differently, while the 

first was independent from topography, the second had limitation on hilly areas being 

exclusive for flatlands. 

 Blow-downs on tropical rainforest were documented by Espírito-Santo et al. (2014) in 

Brazil. They used data from airborne Lidar and medium spatial resolution imagery as 

well as forest growth simulator. It was found that small scale disturbance caused 98.6% 

of total carbon released in the Amazons, 1.1% is due to intermediate disturbance and 

0.3% to large disturbance. 

 

Indirect approaches to study disturbance are surveys made with other purposes but their 

results may provide important information. These happen with the illicit crops or ecosystem 

transformation assessment. They bring out data to identify main drivers of loss and 

disturbance regimes patterns or dynamics. As an example, the United Nations Office on 

Drugs and Crime has used successfully Landsat 7 and 8 imagery for the Colombian 2014 

report; pansharpened images with the panchromatic band, and the implementation of 

decision trees algorithm were used to identify coca crops verified with overflights 

afterwards. Additionally, other plant cover types were classified by supervised methods 

(UNODC 2015). The outcomes of this survey can be used to assess patchiness in the 

landscape and land cover change. As well transformation studies remark the main drivers 

affecting the ecosystem at different stages. Etter et al. (2007) explain how clearing, cattle 

grazing, exotic pastures complemented with drug economy, migration and deforestation, 



91 

 

among others, have caused forest loss in Colombia. To identify these drivers, their trends 

and occurrence will improve the understanding of tropical forest risk and loss, and will help 

to create a more appropriate and pertinent monitoring programs. 

Table 2.6.3.1 shows the hyperdata application from optical sensors according to Chamber et 

al. (2007). The specific relation to disturbance regime was included. Hyperdata is 

understood as high volume of data, some are related to high spatial or spectral detail, or 

high frequency This paper also explain the relevance from other sensors such as SAR and 

LiDAR datasets, and highlight the potential of fusion data and scaling methods to create a 

more complete view of the ecosystem. 

 

Table 2.6.3.1 Hyperdata features from sensors used for disturbance regime assessment  

 

 HYPER 

Spectral Spatial Temporal 

Other 

resolutions 

High spatial 

Low frequency 

Multispectral 

Low frequency 

Moderate 

spatial 

resolution 

Multispectral 

Study level Crown/canopy 

level 

Trees level and 

possible trees 

delineation 

Regional to 

Global view 

Properties 

assessed 

Biochemical 

content 

(pigments, 

nitrogen) 

Moisture 

content 

Canopy 

nutrients 

E.g. 

Green 

vegetation, no 

green vegetation 

(wood, litter), 

soil, shade. 

Spectral 

indexes or 

spectral 

response 

changes 

Disturbance 

assessed 

Drought 

Diseases 

Plagues 

Invasive 

species 

Drought 

Selective logging 

Fire 

Flooding 

Logging 

Fire 

detection 

Fire 

recovering 

Greenness 

loss 

 

 

2.6.4 Synergies and implications 

Synergies of disturbances arise when the ecosystem is not adapted because they occur 

rarely or are not natural. Synergies are caused either by extreme natural events such as 

volcanoes eruption and landslides or have mostly an anthropogenic origin (logging, fire, 

roads). Additionally, cumulative disturbance generate strong synergies that diminishes the 

ecosystem recovery probability. In this case, tropical forests are drive to a new state with a 

new land cover and use. 
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Figure 2.6.4.1 shows some interactions of disturbances and synergies in tropical forests 

identified on the post disturbance stage. The core driver of biodiversity and forest loss is 

logging. After clearance, land is not recovered and has new purposes; agriculture, mining 

and livestock. These activities demand infrastructure for extraction and products therefore 

transportation increase the pressure and the accumulation of disturbance. Other external 

variables also affect, population growth, cities expansion, demand new land and natural 

resources for urbanization, highways, dams, ports, among others. 

The ecosystem affected by clearance present an alteration on their ecological process such 

as hydrological alterations, fragmentation and invasive species. For example, habitat 

fragmentation will have different implications on coming disturbance. Patchiness mosaic in 

the landscape is based on size, persistence, composition and location attributes through 

time. All these parameters fix the relationship between the patches and their surrounding 

areas determining how the disturbance moves. In cases where the disturbance spreads over 

specific species or cover types like a specific parasite, heterogeneity in the landscape 

retards the spread. In contrast, disturbance as fire are enhanced and facilitate by some 

patches attributes as edges and number of patches. Otherwise, landscape mosaic do not 

have any effect on thunderstorms, volcanic eruption, tornadoes among others (Turner et al. 

2001). 

 

 

Figure 2.6.4.1 Disturbances synergies of tropical forest loss due to human interventions. 

Solid lines are direct relationships among disturbances. Dashed lines are likely relationships. 

 

Another important synergy after a disturbance is the biological invasions. The exposed areas 

are more vulnerable to alien species invasion. Changes in vertical and horizontal structure, 

species composition and diversity are observed at community level reducing native species. 

Herein, the availability and distribution of resource vary facilitating seed dispersion, 

establishment and persistence of new competitors. There are only few species that tolerate 

extreme environmental conditions and higher disturbance frequency. For these reasons, the 

colonization and spread of foreign and invasive species is more favourable on those areas 

(Hobbs & Huenneke, 1992). See also chapters 4.2.2, 4.6.2, and 5.2.4 for more information 

on species mapping. 

After the synergies are identified as well as the effect of cumulative disturbance, an analysis 

of the ecosystem state and trend will bring out a guide for further management. A study 
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showing this interactions was made by Monzon-Alvarado et al. (2012) in Guatemala. They 

show how after wild fire tropical burned areas were converted to agricultural land. The 

process is explained not only by fire but for other factors like immigration, lack of 

governance, soils quality, proximity to roads, valuable timber and derived products.  

Cumulative disturbance effects are intrinsically related to synergies and observed after 

logging and wild or human made fire at any scale. Monzon-Alvarado et al. (2012) described 

how after wild fire in Guatemala, tropical burned areas were converted to agricultural land 

when other variables are present. The process is explained not only by fire but for other 

factors like immigration and lack of governance besides soils quality, proximity to roads, 

valuable timber and derived products.  

Complex synergies demands multiple approaches for an efficient disturbance regime 

assessment. They require to be evaluated at different spatial and temporal scales. On one 

hand, fragmentation, logging and fire are usually surveyed at landscape level with coarse 

spatial resolution imagery. On the other hand, other disturbance such as biological 

invasions, disease, selective logging required more detailed information and higher spatial 

resolution. The identification of the synergies at different scales on tropical forest are the 

clue for an appropriate selection of sensors and monitoring programs which must have a 

multi hierarchical approach. 

 

2.6.5 Limitations and challenges of remote sensing applications in the tropics 

In the tropics, moisture can reach high values mainly in areas located in the Intertropical 

Convergence Zone. The relief varies, from flat and lowlands to steep mountains with height 

greater than 4.000 m.a.s.l., these particular conditions constrain remote sensing 

applications. In this sense, optical satellite imagery in the tropics often presents high cloud 

cover and shadows, which limits their use mainly in the raining seasons and humid forest 

(Gibbs et al 2007, Deutscher et al. 2013). Therefore, the frequency time with which a 

satellite passes and captures an image is determinant for a correct selection of a sensor in 

the tropics.  

In addition, commercial satellites (with high spatial resolution) have very low temporal 

resolution in a specific orbit, although nowadays is increasing the development of satellite 

constellations (e.g. Rapideye, Spot, Worldview).The main acquisition constrain is that they 

have to be booked and are restricted to the government or corporation's budget. As well, 

imagery is used to be captured on dry season that limits their application on ecosystems 

such as wetladns. 

Imagery from sensors with medium spatial resolution are captured almost one or two per 

month which suggest enough continuity of data. In spite of this, the strong and long rainy 

season in the tropics and the complex topography (relief) in some areas implies that the 

frequency with which an image is captured it is not directly related with data availability in 

short and stables periods of time. Depending on the topography and the weather of specific 

regions, it is possible just to have one-two free cloud image every year or even less. Table 

2.6.5.1shows the satellite passing time intervals for different spatial resolution sensors.  

Table 2.6.5.1 and Figure 2.6.5.1 show the image availability for satellite programs with 

different spatial resolutions. Three different sites were checked; Colombia (COL; lat: -1.072, 

lon: -70.588), Congo (CON; lat: -0.165, lon: 21.481) and Indonesia (IND; lat:-1.556, lon: 

144.115). The selected scenes have less than 10% cloud cover and the assessed time 

window is mainly between 2005 (Jan-1st) and 2015 (Dec-31st) although it varies for some 

programs based on their schedule specificities. It is observed how the number of images 

increase when the sensors have moderate or medium resolution as well as when composites 

are available. In the same way, an average of one scene is available for high resolution per 

year. Among the three sites, the table shows that the most challenging location for optical 

imagery surveys is Indonesia.  
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Table 2.6.5.1 Different sensors checked to assess imagery available with cloud cover less 

than 10% in the tropics. 

Spatial resolution 

range 
Sensor 

Pixel size 

(m) 

Time 

window 
Global revisit 

time (days) 

High and 

Very High 

(<10m) 

Spot 6/7 1.5 2012-2015 
26 

(single date) 

Spot 6/7 2.5 2012-2015 
26 

(single date) 

Spot 6/7 6 2012-2015 
26 

(single date) 

Medium 

 (10-100m) 

Spot 4/5 10 2005-2015 
26 

(single date) 

Spot 4/5 20 2005-2015 
26 

(single date) 

Landsat 7 30 2005-2015 
16 

(single date) 

Landsat 8* 30 2013-2015 
16 

(single date) 

Aster (L1A) 30 2005-2015- 
16 

(single date) 

Low and 

very low 

(>100m) 

Modis (MOD09A1) 500 2005-2015 

Everyday 

(8 days 

composite) 

Spot Vegetation* 

1/2 (S10) 
1000 2005-2014 

Everyday 

(10 days 

composite ) 

 

 

http://www.indexdatabase.de/db/s-single.php?id=18
http://www.indexdatabase.de/db/s-single.php?id=15
http://www.indexdatabase.de/db/s-single.php?id=14
http://www.indexdatabase.de/db/s-single.php?id=14
http://www.indexdatabase.de/db/s-single.php?id=14
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Figure 2.6.5.1 Imagery available with cloud cover less than 10% for Colombia (COL), 

Congo (CON) and Indonesia (IND). On the left it is the total number of scenes on the time 

window assessed at logarithmic scale. On the right it is the number of scenes normalized 

per year. 

When disturbance demands frequent observation may be observed solely with medium or 

low spatial resolution imagery. Landsat satellites products are the most used on monitoring 

logging disturbance (e.g. Global Forest Watch, Hansen et al. 2013). Even though the 

satellites passes over the same path row every 16 days it is unlikely to obtain a quality 

image every 16 days. One alternative of some monitoring programs that work with 30 m 

resolution has been used to generate composites with good quality pixels.  

The use of lower-moderate spatial resolution is also often. In the last years, MODIS 

program with 16 days composites have been broadly used to evaluate forest degradation, 

land use change and more. As well, specific events that are easily detectable like active fire 

and thermal anomalies can be measured with higher frequency programs like GOES and 

MODIS between 2 to 12 hours periods. Frequency of low spatial resolutions sensors is high, 

then the possibility to obtain a free cloud imagery is higher. All this suggest an implicit 

relationship between low spatial resolution and high temporal resolution, in other words is 

less likely to get a good quality image at high spatial resolution in the tropics when temporal 

resolution is low. 

Otherwise, disturbance regime studies with active sensors have been limited. The 

acquisition, process and analysis of SAR data increase significantly the cost, this reduce its 

application in the tropics. In addition, a good quality DEM is required for a proper SAR 

calibration rarely available in tropical countries. However, this trend is changing, since 

Sentinel-1 is in orbit delivering C-band data free of charge and ALOS Palsar I imagery is 

also available for everyone. All these imply more opportunities to develop new SAR 

applications. 

Finally, it is recommended to build up a framework including data of forest conditions and 

the disturbance features to choose properly a type of sensor for disturbance regime 

assessment. In this sense, Gibbs et al. (2007) proposed a stratification matrix for tropical 

carbon stocks that could be modified and applicable for disturbance regime surveys. The 

matrix include broad forest types, forest conditions like drainage, slope, and others (Annex 

1). All this information create a more complete perspective and understanding of the forest, 

presenting the vulnerability level of the ecosystem and their exposure to different types of 

disturbance that have to be complemented with a budget assessment. At that point, it is 

necessary to evaluate cost, real availability, and other scientific and logistic aspects. The 

integration of these key factors will improve the selection of a specific sensor for 
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disturbance regime monitoring highlighting the assessment priorities for each forest type 

into a well-planned program. See also chapters 4.1 and 5.1 for more information on current 

and upcoming Earth observation missions, respectively. 

 

2.6.6 Existing resources and monitoring programs for disturbance regime 

assessment  

Worldwide exist several resources for visualizing and obtaining satellite images and 

processed related to disturbance, some data are:  

 Forest 

 Global Land Cover Facility (University of Maryland) 

(http://www.glcf.umd.edu) 

 Global Forest Watch (http://www.globalforestwatch.org/) 

 Global 1km Forest Canopy Height (Simard et al., 2011) 

http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023  

 

 Towards in near real time 

To obtain real-time data to support implementation of monitoring systems (near real 

time and long-term)  

Fires and smoke emissions:  

 Global Fire Forest Watch http://fires.globalforestwatch.org/ 

 MODIS Rapid Response https://earthdata.nasa.gov/data/near-real-

time-data/rapid-response  

 ESA - ATSR World Fire Atlas http://due.esrin.esa.int/page_wfa.php 

 JRC Fire Monitoring Tool http://firetool.jrc.ec.europa.eu/  

Flooding 

 Global Flood Detection System http://www.gdacs.org/flooddetection/ 

 

 Terrain and climate 

To get data for describe, analyze and model disturbance regimes across local to 

continental scale. 

 Shuttle Radar Topography Mission (http://www2.jpl.nasa.gov/srtm/) 

 Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) 

(http://topotools.cr.usgs.gov/gmted_viewer/)  

 3D Land Mapping: Combining Lidar and Radar for Remote Sensing of 

Land Surfaces (http://lidarradar.jpl.nasa.gov) 

 WorldClim: Global climate data for modelling and GIS (Hijmans et al, 

2005) http://www.worldclime.org.  

 

2.6.7 Key references for section 2.6 

Asner, G. P., Scurlock, J. M., and A Hicke, J. 2003. Global synthesis of leaf area index 
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http://firetool.jrc.ec.europa.eu/
http://www.gdacs.org/flooddetection/
http://www2.jpl.nasa.gov/srtm/
http://topotools.cr.usgs.gov/gmted_viewer/
http://lidarradar.jpl.nasa.gov/
http://www.worldclime.org/
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3.1 INTRODUCTION 

Drivers are induced factors, natural or human, that directly or indirectly bring about a 

change (Millenium-Ecosystem-Assessment 2003). There are several drivers of biodiversity 

loss, acting at different scales. Some are evident and occur at an alarming rate, such as the 

clearcutting of natural forest, or land cover change (Mukul and Herbohn 2016). There are 

also indirect drivers, such as economic trends and human population increase. Drivers are 

classified as proximate (direct) and underlying (indirect) (Geist and Lambin 2002; Kissinger 

et al. 2012). Some of the drivers listed in this section are considered only from a conceptual 

point of view, although it is not possible to track them directly using remote sensing (RS) 

data, they are important for understanding the disturbance regimes and assessing the 

vulnerability of ecosystems (Chuvieco et al. 2014; Pereira et al. 2013). 

Despite the general agreement among the international community through the Convention 

on Biological Diversity (CBD) on the importance to preserve biodiversity, the extent of 

natural areas (including forests) is still decreasing (Keenan et al. 2015). Geist and Lambin 

(2002) classified the forces driving tropical deforestation into two types of drivers: 

proximate (agricultural expansion, wood extraction, infrastructure, mining and oil 

exploitation and settlement), and underlying (demographic, economic, technological, policy 

and institutional, and cultural factors). Proximate drivers are the “visible motivations”, while 

underlying drivers belong to a higher causal order that determines the degree of pressure on 

the environment (Rademaekers et al. 2012). 

The geography of life on Earth remains poorly documented (Jetz et al. 2012). In order to 

develop a biodiversity monitoring system, biodiversity must be defined in such a way that 

proper indicators can be developed for efficiently assessing the impact of the driver(s) or 

disturbance(s) occurring in the region of interest. However, robust monitoring designs 

remain scarce, with the result that the drivers of biodiversity loss are not fully understood 

(Bradshaw et al. 2015). Moreover, no standards for spatial analysis are applied to ecological 

studies, yet these are essential to enable valid cross-comparison (Wegmann et al. 2016). 

This chapter presents concepts to develop baselines or reference scenarios for monitoring 

biodiversity and characterising drivers of biodiversity loss. Proximate drivers and disturbance 

regimes are concepts commonly used interchangeably. For information on disturbance 

regimes, please see section 2.6. 
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3.2 BASELINE OR REFERENCE SCENARIOS FOR 
BIODIVERSITY MONITORING 

In order to monitor biodiversity, a clear definition of reference scenario or “baseline” is 

required; however, the definition often differs between the RS community and the 

conservation community. Fortunately, new publications that aim to improve communication 

between both communities are available, one of the publications is that by Buchanan et al. 

(2015). Both communities use similar terms when defining reference scenarios, the terms 

“ecosystem”, “habitat” and “landscape” are used. An ecosystem is usually defined as a 

community of a biotic component interacting with an abiotic components (Smith and Smith 

2012). The environment in which this interaction takes place may have specific spatial limits 

that fluctuate in time but are drawn for practical reasons. The ecosystem is used as the 

basic unit of analysis by scientists from various disciplines, including geographers, RS 

specialists and ecologists. The term is also commonly used by the land planning community 

and in the anthropocentric concept of ecosystem services (Strand et al. 2007). On the other 

hand, “habitat” is defined as the location where a particular organism can be found: the size 

of the habitat depends on the particular organism and its environmental requirements 

(McGarigal & Marks, 1995). For this reason, defining habitat instead of ecosystem may be 

more appropriate when defining reference scenarios for a particular organism. Noss (1983) 

considers that the identification of landscapes as patterns of habitat types or patterns of 

interacting ecosystems was required to support long-term management decisions, by 

favouring regional conservation above local conservation. 

The extent of habitats or ecosystems is frequently determined from land cover maps derived 

from RS, as wetlands, savannas, agriculture and different forest types can be distinguished 

by their respective spectral characteristics and phenological patterns. Phenology has been 

used to discriminate different land cover types based on the interannual variation of 

vegetation reflectance, which has been especially helpful for characterising agricultural 

cycles (Anaya et al. 2015; Ganguly et al. 2010; Jeganathan et al. 2014; Leinenkugel et al. 

2013). From such maps it is possible to derive an ecological interpretation based on spatial 

heterogeneity (McGarigal and Marks 1995). The capability of satellite data to cover large 

areas makes RS data an obvious choice for monitoring direct drivers, such as agriculture as 

a driver of wetlands loss (Chen and Liu 2015), the use of fire in savannas to maintain 

grassland for livestock production (Burrows et al. 1990; Palomino and Anaya 2012) and the 

pressure on natural forests that is brought about by the expansion of oil palm plantations 

(Fitzherbert et al. 2008).  

There are also numerous types of RS-based products which can be used to increase the level 

of detail on these spatial units, such as tree height, tree density and vegetation structure. 

Different strategies derived from RS technology can be used to discriminate forest 

conditions. For example, active sensors such as LiDaR or RADAR are well known for their 

ability to penetrate the canopy and inform on forest vertical structure, while the spectral 

resolution of optical data is known for its ability to characterise biochemical components 

(chlorophyll, water, dry matter). Fusion of optical, RADAR and LiDaR data can also improve 

the ability to discriminate between forest types (Reiche et al. 2015; Tsui et al. 2012). See 

section 4.1 for information on available Earth observation data.  

The choice of a monitoring technique needs to be based on the particularities of the forest 

type of interest and the nature of the disturbance(s). For example, monitoring dry forests 

remains challenging, since during the dry season the leaf area index (LAI) is low and most of 

the energy captured by the sensor comes from the underlying bare ground. In such a case, 

cloud-free images from the wet season are required to better assess these ecosystems 

(Strand et al. 2007). On the other hand, the natural vegetation of tropical rain forests is 
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often considered to be homogeneous and difficult to classify or subdivide into further classes 

because the differences between phenological patterns are subtle and the vegetation indices 

are saturated. Additionally, depending on the spatial resolution of the sensor, it may be 

difficult to identify forest margins and fragments, since the transition from pasture to forest 

is often gradual (Tomich et al. 2005). Souza et al. (2005) combined spectral and spatial 

information to detect canopy damage by using Landsat images and aerial videography. Note 

that this technique was developed in order to detect logging. In tropical regions, cloud cover 

is common and this significantly affects the monitoring capability of optical sensors (Anaya 

et al. 2015). Increasing the frequency of observations can improve the probability of 

obtaining cloud-free observations. The advent of the Sentinel-2 constellation will also 

improve the probability of obtaining forest canopy data in such regions with a revisit time of 

only five days. 

3.3 DRIVERS OF BIODIVERSITY LOSS 

3.3.1 Proximate drivers 

The strongest impact on tropical forest biodiversity is from the expansion of agriculture 

(Newbold et al. 2014), and it occurs at different scales: first, large areas of traditional crops 

(e.g. soya, coffee, banana, sugar cane, rice), new crops for biofuels, commercial forest 

plantations and the creation of pasture for cattle ranching; and second, local subsistence, 

such as illegal cropping, self-sufficiency farming, fuelwood extraction and illegal logging. 

Some of these practices not only remove native vegetation but also establish exotic 

vegetation, which grows rapidly and has no natural competitors: agricultural and forestry 

activities are highly dependent on exotic species, which are considered to be an important 

threat to the abundance of native plant species and biodiversity in general (Jauni and 

Ramula 2015). Changes in biotic communities brought about by the introduction of invasive 

plant species affect the evolution of native species via, for example, competitive exclusion, 

and may lead to their extinction (Mooney & Cleland, 2001). Selective logging deserves 

particular attention, since in the context of tropical developing countries, these logged areas 

are at risk of undergoing permanent land use change (Asner et al. 2005; Berry et al. 2010). 

It is estimated that by the middle of this century, approximately 25 million kilometres of 

legal and illegal roads will have been built throughout the world (Laurance et al. 2016). 

Among the important proximate drivers are those arising when implementing development 

projects, such as hydrocarbon exploration and production (Killeen 2007); oil extraction may 

also lead to contamination, from oil-spill (Hurtig and San Sebastián 2002). Other proximate 

drivers arise from the construction of hydroelectric power plants and energy grids (Killeen 

2007). The contamination accompanying gold mining in high mountain ecosystems of the 

neotropics is especially harmful to fauna, since mercury and cyanide are used to separate 

gold from ore along water bodies. (Messerli et al. 1997; Preciado Jeronimo et al. 2015; 

Velásquez 2012). Most such projects have entailed road construction and have been 

followed by a process of human settlement (Southworth et al. 2011). Thus there is a need 

for effective algorithms to detect roads in different environments, including tropical forests 

in developing nations. 

Also considered as proximate drivers are unintentional fires on cropland or pasture that 

spread to forest during land clearance or the burning of crop residues, and natural 

phenomena such as flooding, wildfires and blowdown. Spaceborne data has attracted 

particular interest because it makes possible the characterisation and monitoring of fire-

related drivers, enabling the mapping of burned areas and the detection of active fires. The 

occurrence, intensity and size of fires are expected to increase because of the higher 

temperatures that will result from climate change (Anderson et al. 2011; Aragão et al. 2007; 
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Le Page et al. 2008; Morton et al. 2013; Oliveras et al. 2014). Among the different RS 

datasets available, optical data is particularly suitable for wildfire monitoring, allowing the 

black land surfaces that usually remain after fire to be detected from the changes in 

reflectance, especially in the Red and Near-Infrared (NIR) bands; this can be augmented by 

characterising the water content by using the Short-Wave Infra-Red (SWIR) band (Chuvieco 

et al. 2008; Oliva and Schroeder 2015; Roy et al. 2008). Active fires can also be detected by 

the sharp thermal contrast between hotspots and the background, which is more easily 

observed in the middle infrared (for instance, channel I4 for VIIRS or 21 for MODIS). Near 

real-time products based on these techniques are available online at Fire Information for 

Resource Management System FIRMS17. Regional networks like Red Latino Americana de 

incendios forestales RedLatIF18, Southern African Fire Network SAFNET3 and Southeast Asia 

Regional Research and Information Network SEARRIN contribute to the distribution and 

validation of such global-scale burned area products. More information on the 

characterisation of proximate drivers using RS can be found in section 2.6 Disturbance 

Regimes. 

3.3.2 Underlying drivers 

Unlike the majority of proximate drivers, most underlying drivers cannot be observed by 

using RS, as this technology cannot register or detect market trends and geopolitics (Killeen 

2007), technological change (driving agricultural expansion) (Kissinger, et al., 2012) and 

aspects of ethics, such as the failure to account for the importance of biodiversity loss 

(Hooper et al. 2012). Social-political factors are also of great concern, including lack of 

environmental protection policy enforcement by authorities, uncertain property rights, 

poverty and all the aspects of human well-being (Crane 2006). However, RS can be used to 

monitor other important underlying drivers of biodiversity loss, such as human population 

increase and climate change. 

The IPAT equation has been used to elucidate the forces driving environmental impacts (I) 

as a function of population (P), average consumption (A) and technology (T) (York et al. 

2003). RS studies have demonstrated the usefulness of night-time optical data to determine 

the distribution of regional (Escobar et al. 2015) and global human settlements and their 

connectivity (Dobson et al. 2000; Keola et al. 2015; Zhou et al. 2014). Urbanised areas are 

important indicators of human population and their interaction with the environment (Patel 

et al. 2015). The highest accuracy from ten global urban maps was found for the MODIS 500 

m based on the Enhanced Vegetation Index; these maps have been validated by using high 

resolution images from Google Earth and Landsat images (Potere et al. 2009). Recently, 

daytime optical data from a 40-year time series of Landsat data has also been used to 

derive urbanised areas (Patel et al. 2015). Urban maps and census information have been 

used as a modelling approach to generate a grid map of population density (Lung et al. 

2013). Night-time light imagery has also been successfully used for estimating population 

and economic growth in different parts of the world (Archila Bustos et al. 2015; Zhang and 

Seto 2011).  

The consequences of climate change, such as droughts (Vogt et al. 2016), extreme 

precipitation events and frequent major floods (Cavalcanti 2012; Hoyos et al. 2013) have 

the potential to become the most important drivers of biodiversity loss (Strand et al. 2007). 

For instance, recent climatic variability in the tropical Andes has exceeded previous records 

(Anderson et al. 2011), clearly signalling a trend towards extreme events (Cavalcanti 2012; 

Hoyos et al. 2013). It has also been reported that the intensification of the hydrological cycle 
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in western Amazonia (Gloor et al. 2013) and also the impacts of extreme droughts in 

Amazonian forests are accelerating tree mortality and decreasing forest productivity 

(Feldpausch et al. 2016). RADAR and optical data techniques have been used to measure 

climatic variables at a global scale, such as precipitation (Mantas et al. 2015), temperature 

(land surface and oceans) and composition of the atmosphere (carbon monoxide (Liu et al. 

2005), carbon dioxide and ammonia (Buchwitz et al. 2015)). A list of satellite sensors 

contributing to the understanding of essential climate variables is available in Hollman et al. 

(2013). 

3.4 CONCLUSIONS AND RECOMMENDATIONS 

Population growth (the world population is expected to be more than 7 billion by 2015) and 

the growth of the market economy are important global drivers of biodiversity loss. In this 

context, the regional footprint has been found to be an important indicator of the level of 

consumption in a world that will become resource-constrained (Tukker et al. 2016). Higher 

demand from the human population for goods and services results in a chain of reactions, 

triggering multiple drivers, such as the intensification of agricultural practices, more tree 

plantations and increased fossil fuel consumption (Proença and Pereira 2015). These drivers 

result in more waste and pollution that intensify the impact on the health of ecosystems.  

 The difficulty of mitigating the impact of these drivers is reinforced further by uncertainty 

about land ownership (Naughton-Treves and Wendland 2014) and the failure to take account 

of the value of biodiversity and ecosystem services (Proença and Pereira 2015). All these 

negative impacts occur despite the implementation of policies and regulations and of 

measures such as the establishment of reserves, parks, or other types of protected areas in 

developing countries as part of conservation programmes (Combes et al. 2015). One good 

example of the use of high resolution RS for supporting policy application is the Brazilian 

programme CAR (www.car.gov.br/#/, last accessed March 2017) which regulates the 

country’s land reform programme, will enable the enforcement of the law on illegal 

deforestation and supports the implementation and compliance monitoring of the forest 

code. Nowadays, most biomes are experiencing biodiversity loss (Proença and Pereira 2015) 

and efforts to curtail deforestation in the tropics have met with varying success (Pfaff et al. 

2013).  

The identification of underlying drivers is important in order to understand the dynamics of 

proximate drivers across time and space. However, RS data cannot provide all the 

information needed to identify all the drivers of the loss of forest or of biodiversity. Ground 

monitoring (e.g. through regional networks) is necessary, not only for the calibration and 

validation of monitoring procedures, but also to provide detailed information and to 

characterise the human activities occurring in the region of interest (e.g. deforestation due 

to selective logging, or fuelwood consumption by local populations). Section 4.2 presents 

approaches for field data collection, and section 5.3 presents emerging techniques for using 

RS data synergistically with field data for ecosystem monitoring. Section 2.6 provides further 

information on types of disturbances that can affect tropical forests.  

The tremendous amount of free high and medium spatial resolution RS data (e.g. Landsat, 

Sentinel-1/2) provides an opportunity for large-scale monitoring of drivers of biodiversity 

loss19. Specifically, the Landsat archive allows the characterisation of the dynamics in forest 

cover over the past four decades. Hansen et al. (2013) used these data to map the area 

under trees throughout the world from 2000–2012, to reveal losses and gains in tree cover. 

This project is still actively releasing information every year. Furthermore, RS datasets are 

                                           
19

 Google earth engine has data from Landsat, MODIS, Sentinel and other sensors 

http://www.car.gov.br/#/
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becoming easier to download and use20. The advent of the Sentinel constellations (1A/B, 

2A/B in particular21) will further facilitate the establishment of dense time series of RS data, 

enhancing the capabilities for monitoring the impact of drivers in tropical regions affected by 

cloud cover. See sections 4.1 and 5.1 for further information on available and upcoming 

Earth observation data. Recently, methods to monitor forest cover change at global and 

regional scales, based on dense time series, have been successfully applied (Hansen et al. 

2014; Yan and Roy 2016). The Global Forest Watch tree cover change products22 have been 

produced in response to monitoring requirements, particularly those of REDD+; they are 

available online for free and can be an asset for countries with low forest monitoring 

capacities. Initiatives such as the Global Observation of Forest Cover and Land Dynamics 

(GOFC-GOLD) and the Global Forest Observations Initiative (GFOI) provide 

recommendations on how best to use such datasets23.  

Determining the spatial distribution of biodiversity is important not only to assess the 

impacts of drivers and disturbance regimes but also to identify the vulnerability of 

biodiversity. Land cover maps derived from RS have been used as input in order to 

determine habitats and ecosystems. Here we have pointed out that the term “ecosystem” 

can be used as a common unit of analysis for biodiversity and we have stressed the 

importance of defining the practical limits of different ecosystems, in order to improve 

monitoring schemes. The concepts discussed in this chapter may help to bridge the gap 

identified by Buchanan et al. (2015) between the conservation community and the RS 

community that has arisen because some conservationists are not using the full potential of 

RS for biodiversity research and monitoring, and some RS specialists are not fully capturing 

the complexity of biological systems. 
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The possibility to observe the Earth from air and from space opened the doors to periodically 

observe natural resources over vast areas. From the launch of the first Earth observation 

satellite TIROS, (Television Infrared Observation Satellite) intended for meteorological 

studies in 1960 (NASA, 2015a) until present, space agencies worldwide have developed 

various programs to collect data and thus have helped us learn more about Earth-surface 

processes.  

A wide variety of data are currently available, from various sensors including optical, radar, 

hyperspectral and Light Detection And Ranging (LiDAR). These data are captured from a 

wide range of platforms from in-situ collection to satellites, all with the same purpose of 

“Observing the Earth.”  

Recent changes have allowed access to Internet databases containing historical remotely-

sensed data, which has been positive for scientific research. Also available now are new 

tools that will aid in understanding natural and anthropic processes, leading to improved 

natural resource management (ESA [no date]). 

Note the use of Unmanned Aerial Vehicles (UAVs), also known as Unmanned Aerial Systems 

(UAS) or drones, for Earth observation is still at the research and development stage for 

tropical forest monitoring, however its use has been increasing over the past years 

(Colomina and Molina, 2014). Such platforms can carry different types of sensors such as 

optical, thermal, hyperspectral, SAR, and LiDAR sensors (Colomina and Molina, 2014). Based 

on the type of sensor onboard the UAV, such platforms can support the acquisition of data 

relevant for the six EBVs considered in this sourcebook (see Table 4.1.2.2). UAVs can be 

employed for sampling operations but also for wall-to-wall monitoring activities, within the 

local legal framework that regulates the employment of such systems. Examples of 

applications can be accessed for free online (Pajares Martinsanz, 2012; Lucieer et al., 2015).  

 

4.1.1 Earth observation programs 

In response to a recommendation from an expert panel on remote sensing from space, the 

Committee on Earth Observation Satellites (CEOS) was established in 1984, as an 

international forum whose function was to coordinate Earth observations from space, with 

the main objective of making it easier for the community to access and use data collected by 

satellites. It currently places special emphasis on the validation of data by external groups. 

This initiative promotes the exchange of information and inter-agency collaboration among 

various national and international space agencies which partner together to launch satellites. 

It has further contributed to the establishment and development of the Group on Earth 

Observations (GEO), currently with 31 members (space agencies of various countries) and 
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24 participating organizations, which are government agencies and organizations (CEOS [no 

date]; CEOS, 2013). 

One major program designed to monitor the Earth’s land surface and understand key 

components of its functions is NASA’s Earth Observing System, a program established in the 

1980s (NASA, 2015b). This program is still in operation and uses several satellites and 

sensors to accomplish its objectives. As an example, it operates three sensors which are a 

succession of systems for the study of the three main components of Earth’s processes: 

atmosphere, ocean, and land. These sensors are: AVHRR (onboard NOAA satellites since 

1978); MODIS (onboard satellites Terra and Aqua, launched in 1999 and 2002, 

respectively); and VIIRS (onboard the Suomi-NPP satellite, launched in 2011); VIIRS data 

are the successors to the former two. This means that historical data are available to 

generate time series. 

Within this same program, perhaps the data with more spatial and temporal coverage 

available and used, are undoubtedly Landsat. The Landsat era started in 1972 with the 

launch of Landsat 1 (initially called the Earth Resources Technology Satellite) and continues 

until nowadays with Landsat 8 (NASA, 2015c). Its design allows doing long-term studies that 

provide information about natural resources since the 1970s. 

Following Landsat, medium resolution data more widely available are SPOT (Satellites Pour 

l’Observation de la Terra) images, which are used in various applications, mainly in Europe. 

These were designed by the Centre National d´Etudes Spatiales (CNES) in France. The SPOT 

era started in 1986, with the launch of the first SPOT satellite. Between 1986 and 2015, 

seven satellites have been launched, each one mainly improving in terms of spatial 

resolution (CNES, 2015).  

In Europe, Earth observation is one of the main activities of the European Space Agency 

(ESA). To fulfill this purpose, ESA established the European monitoring system Copernicus, 

previously known as GMES (Global Monitoring for Environment and Security). The mission of 

this program is to collect data from different sources, such as satellites and sensors in-situ, 

and make them available for use in the study of six themes: land, sea, atmosphere, climate 

change, safety, and emergency management (Copernicus, ND). A series of satellite 

constellations, known as Sentinels, has been designed, and the first satellites: Sentinel 1A, 

and Sentinel 2A, were launched in 2014 and 2015, respectively. At present, satellite data 

can be divided into two groups: data provided by the Sentinels, expressly developed to fulfil 

the objectives of Copernicus; and the Copernicus Contributing Missions, operated by national 

or international agencies. Among them, for example, we find ENVISAT, designed to support 

studies on atmosphere, land, ocean, and ice (Copernicus [no date]). 

Within the framework of European collaboration, Belgium, France, Italy and Sweden, 

together with ESA, established the Vegetation Program with the satellites SPOT 4 and SPOT 

5. This program, aimed at monitoring vegetation at a regional and global level, started in 

1998 with SPOT 4, and was terminated in 2015 following the decommission of the SPOT 5 

satellite sensor. The design of this sensor was based on users’ proposals and requirements 

set on the first meeting of the International Users Committee held in Brussels, Belgium, in 

1992. For 17 years, this program made available to users a wide variety of products which 

allowed them to analyze changes in vegetation and study the connection between biosphere 

and climate change (VITO NV, 2015). 

A specific group of sensor types are imaging spectrometers, also known as hyperspectral 

sensors, which simultaneously acquire spatially co-registered images in many narrow 

spectrally-contiguous bands (Schaepman, 2007). This allows for physical-based 

measurement and modeling of key dynamic processes of the Earth’s ecosystems by 
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extracting geochemical, biochemical, and biophysical parameters (Ustin et al., 2009). Apart 

from more traditional fields of applications using imaging spectrometers (IS) such as in 

geology, the biodiversity community identified IS as a key technology to directly retrieve 

foliar information of plant pigments linked to photosynthesis, and more detailed 

characterization of landscape measuring key surface pattern (Pettorelli et al., 2014).  

The first operational sensor HYPERION on the EO-1 Platform of NASA’s Jet Propulsion 

Laboratory (JPL) was designed as a one year experiment, launched in 2000. After 15 years 

of operation, this system is still running and provides long-term and free data from selected 

sites. In 2001, ESA’s imaging spectrometer CHRIS on PROBA platform was launched and is 

also still operational. Special emphasis was put on BRDF measurement capability to analyse 

the influence of the viewing direction to surface characteristics. The Hyperspectral Imager 

for the Coastal Ocean (HICO) has been operating on the International Space Station since 

October 2009 and provided free data for wide range of applications. There are several 

instruments launched by China over the past three decades (Tong et al., 2014). However, 

data is not yet available at an operational basis for a wider user community. 

Various space agencies worldwide (and the above-mentioned countries) have developed 

systems capable of generating useful data for the study of Earth, and forests specifically; 

among them, owing to the availability of spatial and temporal data: Germany, France, and 

Italy in Europe; Japan, India, and China in Asia; and the USA, Canada, Argentina, and Brazil 

in America. 

 

4.1.2 Available Data sets  

Table 4.1.2.1 describes the sensors according to the most important parameters, and lists 

the relevant EBVs they can contribute to. This sub-section discusses some key concepts that 

are important to understand regarding the suitability of the sensors for the different forest 

monitoring activities. The section will be updated on a yearly basis to report on the new 

missions. Note section 5.1 of the sourcebook lists sensors and associated datasets that will 

be available in a near future.  

Table 4.1.2.1 classifies sensors in two broad types: passive and active. Passive sensors, are 

often referred to as “electro-optical” or simply “optical” sensors. They have the capability to 

acquire the reflected electromagnetic waves of the sunlight and/or the emitted infrared 

radiation from objects on the ground. Examples of such optical satellite systems include 

Sentinel-2, Landsat, and WorldView. Active sensors, refer to 1) RADAR sensors such as 

synthetic aperture radar (SAR), or LiDAR systems. Both can emit their own energy to 

illuminate a target or area of interest, and measure the reflected signal. Examples of active 

sensors are SAR satellites such as Sentinel-1, TerraSAR-X, TanDEM-X, and RADARSAT, and 

LiDAR satellites like ICESat.  

 

Among other key parameters, spatial resolution is important to consider when choosing 

datasets for a given application. Table 4.1.2.1 provides the values of this parameter 

(expressed in meters) for each sensor, and spectral range when appropriate. Spatial 

resolution is an important parameter to consider with respect to the spatial scale of the 

derived EBVs. The spectral range and resolution regulate which EBV can be derived. As an 

example, the narrow band index such as NDLI (Normalized Difference Lignin Index) 

describing the lignin content of vegetation can only be derived using sensors with a high 

spectral resolution in the short wave infrared region (SWIR). Note sensors are described also 

in broad spatial resolution categories. In this sourcebook, the chosen categories are as 

follows: Very High: <=1m, High: <=10, Medium: <=30m, Low: <=300m, Coarse 

<=1,000m. Note the spatial resolution for LiDAR datasets is measured by the distance 
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between the centres of consecutive beams, and between the scanning lines. The beam 

divergence affects also the spatial resolution.  

Another key sensor characteristics is the temporal resolution. Parameters such as phenology 

and productivity are strongly linked to seasonal conditions and needs to be monitored 

regularly. Since the availability of data from passive sensors systems are determined by 

cloud cover, low revisit times can impede the acquisition of appropriate time series to 

monitor a certain biophysical/biochemical parameter. 

In Table 4.1.2.1, column “Relevance to EBVs” lists the EBVs relevant to tropical forest 

monitoring to which the sensors can contribute. Table 4.1.2.2 provides the coding number of 

the EBVs used in Table 4.1.2.1. For more information on the six EBVs covered by this 

sourcebook, please check: http://geobon.org/essential-biodiversity-variables/ebv-classes-2/ 

For further information on past and current observing systems please go online:  

 CEOS EO HANDBOOK – CATALOGUE OF SATELLITE MISSIONS  

http://database.eohandbook.com/database/missiontable.aspx 

 National Aeronautics and Space Administration (NASA, USA): 

http://eospso.nasa.gov/future-missions 

 European Space Agency (ESA): 

https://earth.esa.int/web/guest/missions/esa-future-missions 

 the German Aerospace Center (DLR) compiles information on (past, present and) 

future space-borne imaging spectroscopy missions: 

http://www.enmap.org/sites/default/files/pdf/Hyperspectral_EO_Missions_2015_06_

22_FINAL.pdf 

 Check the publication from Labrador et al. (2012) on “Satélites de teledetección para 

la gestión del territorio” (in Spanish). 

http://geobon.org/essential-biodiversity-variables/ebv-classes-2/
http://database.eohandbook.com/database/missiontable.aspx
http://eospso.nasa.gov/future-missions
https://earth.esa.int/web/guest/missions/esa-future-missions
http://www.enmap.org/sites/default/files/pdf/Hyperspectral_EO_Missions_2015_06_22_FINAL.pdf
http://www.enmap.org/sites/default/files/pdf/Hyperspectral_EO_Missions_2015_06_22_FINAL.pdf
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Table 4.1.2.1 Data sets available  

Platform/ 

Mission 

Life 

span 

Revisit time 

period 

Spatial 

Resolution 

(m) 

Swath 

(Km) 
Wavelength Availability 

Relevance 

to EBVs 
Reference 

Passive sensors 

Hyperspectral 

Hyperion 2000 - 

No 

continuous 

coverage 

30 7.7 0.4-2.5 μm Free 2 
http://eo1.usgs.gov

/sensors/hyperion 

CHRIS 

PROBA 
2001 - 

No 

continuous 

coverage 

18-36 m 14 km 0.4-1,1 μm Free 2 

https://earth.esa.in

t/web/guest/missio

ns/esa-operational-

eo-

missions/proba/inst

ruments/chris 

HICO 2008 - 

No 

continuous 

coverage 

90 m 90 km 0.4-1,1 μm Free 2 
http://hico.coas.ore

gonstate.edu/ 

Multispectral 

Airborne 1940’s - Varies 1, 2, 3, 5  

GeoEye 2008 - 3 days 
PAN:0.41 

MS: 1.64 
15.2 PAN/VIS/NIR Commercial 1, 2, 3, 5 

https://directory.eo

portal.org/web/eop

ortal/satellite-

missions/g/geoeye-

1 

Ikonos 1999 - 
 

3–5 days 

PAN: 0.82 

MS: 3.28 
11 PAN/VIS/NIR Commercial 1, 2, 3, 5 

https://directory.eo

portal.org/web/eop

ortal/satellite-

missions/i/ikonos-2 

RapidEye 2008 - 
5.5 (at 

nadir) 
MS: 6.5 77 VIS/NIR Commercial 1, 2, 3, 5 

https://directory.eo

portal.org/web/eop

http://eo1.usgs.gov/sensors/hyperion
http://eo1.usgs.gov/sensors/hyperion
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba/instruments/chris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba/instruments/chris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba/instruments/chris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba/instruments/chris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba/instruments/chris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba/instruments/chris
http://hico.coas.oregonstate.edu/
http://hico.coas.oregonstate.edu/
https://directory.eoportal.org/web/eoportal/satellite-missions/g/geoeye-1
https://directory.eoportal.org/web/eoportal/satellite-missions/g/geoeye-1
https://directory.eoportal.org/web/eoportal/satellite-missions/g/geoeye-1
https://directory.eoportal.org/web/eoportal/satellite-missions/g/geoeye-1
https://directory.eoportal.org/web/eoportal/satellite-missions/g/geoeye-1
https://directory.eoportal.org/web/eoportal/satellite-missions/i/ikonos-2
https://directory.eoportal.org/web/eoportal/satellite-missions/i/ikonos-2
https://directory.eoportal.org/web/eoportal/satellite-missions/i/ikonos-2
https://directory.eoportal.org/web/eoportal/satellite-missions/i/ikonos-2
https://directory.eoportal.org/web/eoportal/satellite-missions/r/rapideye
https://directory.eoportal.org/web/eoportal/satellite-missions/r/rapideye
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Daily (off-

nadir) 

ortal/satellite-

missions/r/rapideye 

Quickbird 
2001 - 

2015 
2–4 days 

PAN: 0.61 

MS: 2.5 
16.5 PAN/VIS/NIR Commercial 1, 2, 3, 5 

https://directory.eo

portal.org/web/eop

ortal/satellite-

missions/q/quickbir

d-2 

Worldview 

1,2,3 
2007 - 1–3 days 

PAN:<=0.5 

MS:<2 

SWIR: 3.7 

CAVIS: 30 

13.1-

17.5 

PAN/VIS/NIR/S

WIR/CAVIS 
Commercial 1, 2, 3, 5 

https://directory.eo

portal.org/web/eop

ortal/satellite-

missions/v-w-x-y-

z/worldview-3 

AWIFS 2003 - 5 days 56 740 VIS/NIR/SWIR Commercial 1, 2, 3, 5 

https://directory.eo

portal.org/web/eop

ortal/satellite-

missions/i/irs-p6 

Landsat 

1,2,3,4,5,

7,8 

1972 - 16 days 

PAN: 15 

MS: 30 

TIR: 100 

185 
PAN/ 

VIS/NIR/SWIR 
Free 1, 2, 3, 5 

http://landsat.gsfc.

nasa.gov/ 

http://earthnow.usg

s.gov/ 

IRS P6 

Resources

at-1 

LISS III, 

IV 

2003 - 5-24 days MS: 5.8-23.5 

MS:  

24-70-

140 

PAN/VIS/NIR Commercial 1, 2, 3, 5 

https://directory.eo

portal.org/web/eop

ortal/satellite-

missions/i/irs-p6 

IRS 

Resources

at-2 

LISS III, 

IV 

2011 - 24 days MS: 5.8-23.5 

MS:  

24-70-

140 

 

PAN/VIS/NIR Commercial 1, 2, 3, 5 

http://www.isro.gov

.in/Spacecraft/reso

urcesat-2 

SPOT 

1,2,3,4,5,

6,7 

1986 – 
Daily 

(combined) 

PAN: 1.5-2.5 

MS: 6-10-20 
60 

PAN/ 

VIS/NIR/SWIR 
Commercial 1, 2, 3, 5 

http://www.cnes.fr/

web/CNES-

en/1415-spot.php 

http://www.geo-

airbusds.com/en/14

3-spot-satellite-

https://directory.eoportal.org/web/eoportal/satellite-missions/r/rapideye
https://directory.eoportal.org/web/eoportal/satellite-missions/r/rapideye
https://directory.eoportal.org/web/eoportal/satellite-missions/q/quickbird-2
https://directory.eoportal.org/web/eoportal/satellite-missions/q/quickbird-2
https://directory.eoportal.org/web/eoportal/satellite-missions/q/quickbird-2
https://directory.eoportal.org/web/eoportal/satellite-missions/q/quickbird-2
https://directory.eoportal.org/web/eoportal/satellite-missions/q/quickbird-2
https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/worldview-3
https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/worldview-3
https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/worldview-3
https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/worldview-3
https://directory.eoportal.org/web/eoportal/satellite-missions/v-w-x-y-z/worldview-3
https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6
https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6
https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6
https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6
http://landsat.gsfc.nasa.gov/
http://landsat.gsfc.nasa.gov/
http://earthnow.usgs.gov/
http://earthnow.usgs.gov/
https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6
https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6
https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6
https://directory.eoportal.org/web/eoportal/satellite-missions/i/irs-p6
http://www.isro.gov.in/Spacecraft/resourcesat-2
http://www.isro.gov.in/Spacecraft/resourcesat-2
http://www.isro.gov.in/Spacecraft/resourcesat-2
http://www.cnes.fr/web/CNES-en/1415-spot.php
http://www.cnes.fr/web/CNES-en/1415-spot.php
http://www.cnes.fr/web/CNES-en/1415-spot.php
http://www.geo-airbusds.com/en/143-spot-satellite-imagery
http://www.geo-airbusds.com/en/143-spot-satellite-imagery
http://www.geo-airbusds.com/en/143-spot-satellite-imagery
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imagery 

Pleiades 

1A/B 
2011 - 26 days 

PAN: 0.5 

MS: 2 
20 VIS/NIR Commercial 1, 2, 3, 5 

https://pleiades.cne

s.fr/en/PLEIADES/G

P_systeme.htm 

Sentinel 

2A/B 

2015 – 

2017- 

 

5 days 

S2 A&B 
10, 20, 60 290 VIS/NIR/SWIR Free 1, 2, 3, 5 

http://www.esa.int/

Our_Activities/Obse

rving_the_Earth/Co

pernicus/Sentinel-2 

AVHRR 

NOAA-6, 

7,8, 9, 11, 

12,14, 15, 

16, 17, 18 

19 

1978 - Daily 1100 2600 VIS/NIR/TIR free 1, 2, 5 

http://www.nsof.cla

ss.noaa.gov/release

/data_available/avh

rr/index.htm#4 

MERIS 
2002 - 

2012 
3 days 300 1150 VIS/NIR Free 1, 2, 5 

https://earth.esa.in

t/web/guest/missio

ns/esa-operational-

eo-

missions/envisat/in

struments/meris 

https://earth.esa.in

t/web/guest/-/how-

to-apply-1375 

MODIS 1999 - 

1 day 

,8-16-32 day 

composites 

250 

500 

1000 

2330 
VIS/NIR/SWIR

/MWIR/TIR 
Free 1, 2, 5 

http://modis.gsfc.n

asa.gov/ 

SPOT VGT 

1, 2 

 

1998 - 

2015 

Daily 

Global 

coverage, 10 

day 

composites 

1000 2250 VIS/NIR/SWIR 
Free/comme

rcial 
1, 2, 5 

http://www.spot-

vegetation.com/ind

ex.html 

http://www.spot-

vegetation.com/use

rguide/userguide.ht

m 

VIIRS 2011 - Daily 
375 

750 
3040 

PAN/VIS/NIR/

MWIR/LWIR 
Free 1, 2, 5 

http://viirsland.gsfc

.nasa.gov/index.ht

ml 

http://www.geo-airbusds.com/en/143-spot-satellite-imagery
https://pleiades.cnes.fr/en/PLEIADES/GP_systeme.htm
https://pleiades.cnes.fr/en/PLEIADES/GP_systeme.htm
https://pleiades.cnes.fr/en/PLEIADES/GP_systeme.htm
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2
http://www.nsof.class.noaa.gov/release/data_available/avhrr/index.htm#4
http://www.nsof.class.noaa.gov/release/data_available/avhrr/index.htm#4
http://www.nsof.class.noaa.gov/release/data_available/avhrr/index.htm#4
http://www.nsof.class.noaa.gov/release/data_available/avhrr/index.htm#4
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/-/how-to-apply-1375
https://earth.esa.int/web/guest/-/how-to-apply-1375
https://earth.esa.int/web/guest/-/how-to-apply-1375
http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/
http://www.spot-vegetation.com/index.html
http://www.spot-vegetation.com/index.html
http://www.spot-vegetation.com/index.html
http://www.spot-vegetation.com/userguide/userguide.htm
http://www.spot-vegetation.com/userguide/userguide.htm
http://www.spot-vegetation.com/userguide/userguide.htm
http://www.spot-vegetation.com/userguide/userguide.htm
http://viirsland.gsfc.nasa.gov/index.html
http://viirsland.gsfc.nasa.gov/index.html
http://viirsland.gsfc.nasa.gov/index.html
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Active sensors 

Synthetic Aperture Radar (SAR) 

Airborne 1950’s Varies 3, 4, 5  

ALOS-

PALSAR 

1,2 

2006 - 14 days 

Stripmap 3, 6, 

10 

ScanSAR 

100 , 60 

 

Stripmap 

50, 40, 

70, 30 

ScanSAR 

350, 490 

L-band Free 3, 4, 5 

http://www.eorc.ja

xa.jp/ALOS/en/abo

ut/palsar.htm 

http://www.eorc.ja

xa.jp/ALOS-

2/en/about/palsar2.

html 

JERS 1 
1992 -

1998 
44 days 18 75 L-band Free 3, 4, 5 

https://directory.eo

portal.org/web/eop

ortal/satellite-

missions/j/jers-1 

ERS 1, 2 
1991 -

2011 
3 - 35 days 30 100 C-band 

 

 

 

Free 

3, 4, 5 

https://earth.esa.in

t/web/guest/missio

ns/esa-operational-

eo-

missions/ers/instru

ments/sar 

https://earth.esa.in

t/web/guest/-/how-

to-apply-1375 

ENVISAT -

ASAR 

2002 -

2012 
35 days 30, 150, 1000 

100 - 

400 
C-band 

Free/comme

rcial 
3, 4, 5 

https://earth.esa.in

t/web/guest/missio

ns/esa-operational-

eo-

missions/envisat/in

struments/asar 

https://earth.esa.in

t/web/guest/-/how-

to-apply-1375 

Sentinel 

1A/B 

2014 – 

2016 - 

6 days 

S1 A&B 

 

5*5 

5*20 

25*100 

80 

250 

400 

C-band Free 3, 4, 5 

http://www.esa.int/

Our_Activities/Obse

rving_the_Earth/Co

http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm
http://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.html
http://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.html
http://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.html
http://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.html
https://directory.eoportal.org/web/eoportal/satellite-missions/j/jers-1
https://directory.eoportal.org/web/eoportal/satellite-missions/j/jers-1
https://directory.eoportal.org/web/eoportal/satellite-missions/j/jers-1
https://directory.eoportal.org/web/eoportal/satellite-missions/j/jers-1
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar
https://earth.esa.int/web/guest/-/how-to-apply-1375
https://earth.esa.int/web/guest/-/how-to-apply-1375
https://earth.esa.int/web/guest/-/how-to-apply-1375
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/asar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/asar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/asar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/asar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/asar
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/asar
https://earth.esa.int/web/guest/-/how-to-apply-1375
https://earth.esa.int/web/guest/-/how-to-apply-1375
https://earth.esa.int/web/guest/-/how-to-apply-1375
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Instrument
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Instrument
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Instrument
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5*20 

 

20*20 pernicus/Sentinel-

1/Instrument 

https://earth.esa.in

t/web/guest/-/how-

to-apply-1375 

https://sentinel.esa

.int/web/sentinel/se

ntinel-data-access 

Radarsat 

1, 2 
1995 – 24 days 3 -100 50 -500 C-band Commercial 3, 4, 5 

http://www.asc-

csa.gc.ca/eng/satell

ites/radarsat/radars

at-tableau.asp 

TerraSAR-

X 

 

2007 – 11 days 1, 3, 16 10 - 100 X-band 

Free for 

scientific 

applications 

/ 

Commercial 

3, 4, 5 

http://www.dlr.de/d

lr/en/desktopdefaul

t.aspx/tabid-

10377/565_read-

436/#/gallery/350 

TanDEM-X 2010 - 11 days 1, 3, 16 10 - 100 X-band Commercial 3, 4, 5 

http://www.dlr.de/d

lr/en/desktopdefaul

t.aspx/tabid-

10378/566_read-

426/#/gallery/345 

Light Detection And Ranging (LiDAR) 

Airborne 1970’s - Varies Commercial 
1, 2, 3, 4, 

5 
 

ICESat 
2003 – 

2010 
9 -91 days 

40 pulses / 

sec 

70(footpr

int) 

532 nm 

1064 nm  
Free 3, 4, 5 

http://icesat.gsfc.n

asa.gov/icesat/hdf5

_products/index.ph

p 
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https://earth.esa.int/web/guest/-/how-to-apply-1375
https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://sentinel.esa.int/web/sentinel/sentinel-data-access
http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/#/gallery/350
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/#/gallery/350
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/#/gallery/350
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/#/gallery/350
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/#/gallery/350
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10378/566_read-426/#/gallery/345
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10378/566_read-426/#/gallery/345
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10378/566_read-426/#/gallery/345
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http://icesat.gsfc.nasa.gov/icesat/hdf5_products/index.php
http://icesat.gsfc.nasa.gov/icesat/hdf5_products/index.php
http://icesat.gsfc.nasa.gov/icesat/hdf5_products/index.php
http://icesat.gsfc.nasa.gov/icesat/hdf5_products/index.php
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Table 4.1.2.2. List of acronyms and coding numbers of EBVs used in table 4.1.2.1. 

List of acronyms Coding number of EBVs 

CAVIS: Atmospheric Sensor 

IWS: Interferometric Wide Swath 

LWIR: Long Wave Infrared 

MS: Multi spectral 

MWIR: Medium Wave Infrared 

NIR: Near infrared 

Pan: Panchromatic 

SWIR: Short Wave Infrared 

TIR: Thermal infrared 

VIS: Visible 

1- Vegetation phenology 

2- Net primary productivity 

3- Ecosystem extent and fragmentation 

4- Habitat structure 

5- Disturbance regime 
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4.2 IN-SITU DATA: DEFINITIONS AND APPROACHES 
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Haigen Xu, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, 

Nanjing, China 

 

4.2.1 Introduction 

Monitoring biodiversity is fundamental to nature conservation policy and originates from 

ornithology, biogeography, botany and phytosociology. Biogeography studies the distribution 

of species and ecosystems in space and time, while phytosociology deals with the composition 

of plant communities. Organisms and biological communities vary according to geographic 

gradients of latitude, elevation, isolation and soil types. Land can be characterised by 

identification of the species assemblages present, the habitats in which they occur and the 

landscapes in which the latter are present. 

The use of Earth Observation (EO) tools requires ground validation based on in-situ 

observations, because for the interpretation of biodiversity value, the observed land cover 

units must be defined in more detail than can be observed from space. EO observations of land 

cover therefore need to be calibrated with observation of the actual vegetation and species 

present on the ground. The strength of EO is that large areas can be mapped relatively rapidly, 

whereas in contrast, in-situ data are expensive to collect and therefore can only be recorded in 

relatively few carefully selected samples. It has therefore been necessary to develop 

procedures to link EO with in-situ data. This requires a network of sites set up for recording in-

situ observations to link the EO images with the real world on the ground. Evidence is required 

to determine which types of field observations are necessary for specific objectives, linked to 

the approaches that are now available. To allow for informed decisions on this topic, it is 

important that the different types of in-situ observations that have been identified e.g. species 

of canopy trees and epiphytes, are included. It is important to emphasize, that for the majority 

of tropical vegetation, and especially forests, there is still a lack of empirical baseline data 

concerning alpha and beta diversity, as well as on species dynamics and interactions within 

communities and habitats (Scholes et al. 2008). In this section, we will elaborate the role of 

in-situ data for the monitoring of changes in tropical forest biodiversity and make a link with 

the EO data that are described in sections 4.3 and 4.4.  

There are several global and regional in-situ observation networks in tropical regions that 

provide data on the habitats present, as shown in Table 4.2.1.1. The restricted coverage shows 

that there are still relatively few empirical field observations at the necessary levels of detail. 

Even basic inventories of current biodiversity are incomplete (Phillips et al. 2003). There are 

several reasons for this but mainly because cooperation in biodiversity research and 

monitoring is a relatively recent phenomenon. Standardized procedures are not yet available, 

and protocols are not yet agreed or shared. Strategic sampling has not yet been widely 

considered and there is limited exchange of data between spatial scales. Such coordination is 

time intensive and expensive, but recent work on a biodiversity network within GEOBON 

(Scholes et al. 2012), in Africa (Jürgens et al. 2011) and Europe (Ichter et al. 2014), and the 

availability of a global bio-climatic classification (Metzger et al. 2013), could enable these 

problems to be overcome. Now is therefore the time to integrate concepts and approaches for 

the monitoring of tropical forests, and harmonize them, at and between, the multiple scales of 

species, habitats and landscapes needed to produce a coherent, realistic and practical system. 

Any monitoring procedure also needs to cope with the impacts of various drivers of global 

change in tropical forests.  
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Network 

Name 
Coverage Type of Observations Number of sites 

IBAs Birdlife Global Birds, habitats 11,700 sites 

IWC  Global Annual synchronised counts of 

water birds 

>15,000 sites 

RAINFOR South 

America 

Tropical forest  300+ sites, 8 

countries 

BIOTA Africa Africa Terrestrial species 46 observatories in 

3 transects in south 

and west Africa 

LTER China China Forest, grassland, wetland, 

desert, marine, agricultural and 

urban ecosystems 

37 

China BON China  Mammals, birds, amphibians, 

and butterflies 

500+ sites, with 

8000+ line 

transects and point 

transects 

AfriTRon Africa Tropical Forest 300+ sites, 14 

Countries 

 

Table 4.2.1.1 Examples of some major existing Observation Networks that include tropical 

forests and their characteristics. 

In the tropics alpha and beta diversity in the forests is not only exceptional, but additionally, 

the habitats are the most complex in the world (Phillips et al. 2003, Bridgewater et al, 2004). 

Sampling such complexity therefore presents major challenges, including questions such as 

where to place field samples, how many sites need to be sampled and what is a time and cost 

efficient strategy?  

Field inventories are most suitable for in-situ species identification, but have their limitations, 

such as there are few people who can identify tropical trees and animals. Moreover, tropical 

forests are extensive and, because of the many remote locations, site visits are therefore 

difficult, expensive and time consuming. Tree species recognition often requires tree-climbing, 

mostly by native experts with the necessary local knowledge. Approaches are being sought to 

overcome these problems especially in the time and cost optimization of a sampling strategy 

with identification of representative sampling sites, the recording of indicator species and the 

use of life form spectra to define a given forest site. The latter would not need the 

identification of individual species and could therefore be used as a first tier in describing a 

given forest by providing basic information linked to biodiversity, as tropical forests differ 

widely in their structure even within a region.  

EO data are able to provide consistent and objective time series of land cover measurements 

and phenological change. Monitoring sites can be linked to locations of intensive observations 

e.g. Long Term Ecological Research (LTER) sites, to assess impacts of change and underlying 

processes, provided that such sites are representative, as described by Metzger et al (2010), 

for LTER sites in Europe. Synergies also need to be established between the existing 

infrastructures set up by Earth sciences for water and soil parameters and biodiversity 

observatories.  

 

4.2.2 Habitat definitions and species relations 

The term habitat can be defined as the spatial extent of a resource for a particular species 

(Bunce at al. 2013). Species with comparable ecological requirements can be considered to 

share the same or comparable habitats. Plant species assemblages comprise vegetation and 
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form recognisable main divisions in the tropical forests. Species can be important in their own 

right e.g. teak (Tectona grandis) or because of their importance in vegetation structure e.g. 

strangling figs (e.g. Ficus altissima). The tropical forest has been recognized as the most 

complex ecosystem in the world at many levels e.g. species diversity, structural variation and 

the range of variation between continents. Tropical forests on different continents share few 

species because they have diverged in isolation caused by the shifts of the land masses over 

very long periods of time. Tropical forests nevertheless share many ecological characteristics 

and have been described as biomes by the classical bio-geographers of the 19th Century e.g. 

Von Humboldt and Bonpland (1807), because they occur in comparable climates and edaphic 

conditions. The types of tropical forests are based on a combination of observed vegetation 

and climate and therefore constitute comparable ecosystems in different continents but with 

unique species combinations. The term biome has continued to be used at the global scale in 

bio-geographical studies and for modelling the impacts of land use and climate change on 

ecosystems across the world (Woodward, 1987).  

Habitats are used in similar contexts in the literature but they are rarely defined. Reviews of 

the application of the term have been made e.g. by Hall et al. (1997). Definitions have also 

changed over time: 

Place, living space, where an organism lives (Odum, 1963); 

Habitat is a zone (area) comprising a set of resources, consumables and utilities, for the 

maintenance of an organism. The resources occur in union and/or intersect and may also be 

equivalent; links between resource outlets are established by individual searching movements 

of the organism (Dennis and Shreeve, 1996); 

Place where a species normally lives, often described in terms of physical factors such as 

topography and soil moisture and by associated dominant forms (Calow, 1999); 

An element of the land surface that can be consistently defined spatially in the field in order to 

define the principal environments in which organisms live (Bunce et al 2008). 

In Europe several habitat classification systems are used for in-situ monitoring. The most 

generally applicable and standardized system is that of General Habitat Categories (GHC, 

Bunce et al 2013), developed in the EU-FP7 project EBONE24 that is used for in-situ monitoring 

of habitats in several countries in Europe, in Western Australia and South Africa. The 

methodology enables exchange and cooperation between existing national systems such as the 

Swedish NILS system (Ståhl et al. 2011) and the GB Countryside Survey (Haines-Young et al. 

2000). General Habitat Categories (GHCs) are based on the regression of Life Forms on the 

environment. They are defined in classic science, as defined by Raunkiaer (1934), and 

transcend species. For international comparisons, it is important that no biogeographical terms 

or local names are used and that there are explicit rules for definition and determination in the 

habitats in the field (Bunce et al 2008). The GHCs therefore enable integration between 

different national and project approaches because they transcend local and regional differences 

in species composition. GHCs have been used in several European research projects and it is 

exchangeable with the FAO Land Cover Classification System (FAO-LCCS, Kosmidou et al, 

2014)25. The IUCN has developed a standard habitat classification scheme26 belonging to its 

species Red List against which >50,000 species have been coded globally, but comparison with 

habitat categories such as FAO-LCCS or the GHC has not been undertaken. Because of the 

incomplete status and ambiguous classification of some species (e.g. bamboo species 

(Bambusa spp) may belong to several broadleaf categories. In addition, geographical terms 

are not fit for monitoring at a wide scale because they are rarely defined. For collecting in-situ 

information in observation sites, for comparing habitats across a continent and general 

statistics; the General Habitat Category (GHC) protocols are suitable as they have been 

designed for this purpose and already have appropriate life form qualifiers for tropical habitats 

e.g. palms and bamboos.  

Assessing habitats for their biodiversity value is essential because, as the Convention on 

Biodiversity (CBD) emphasizes, habitats are not only an important indicator of biodiversity in 

                                           
24

 http://www.ebone.wur.nl/  
25

 http://www.fao.org/docrep/003/X0596E/X0596e00.htm  
26

 http://www.iucnredlist.org/technical-documents/classification-schemes/habitats-classification-scheme-ver3  

http://www.ebone.wur.nl/
http://www.fao.org/docrep/003/X0596E/X0596e00.htm
http://www.iucnredlist.org/technical-documents/classification-schemes/habitats-classification-scheme-ver3
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their own right, but also serves as a proxy for identification of/diversity in plant species and 

faunal taxa (Bunce et al. 2013). There is a range of different relationships between species and 

habitats. For example, there are generalist species without relationships to specific habitats, 

whereas other species can be associated with one specific habitat type, such as wetlands, 

whereas other species use contrasting habitats in different periods of their life cycle. Da Silva 

et al (2015) showed for the transition zone between the Amazon and Pantanal that habitats 

can be characterized by particular tree species assemblages. They concluded that 332 tree 

species from both biomes are present in this region, that the four major forest habitats had 

their own characteristic species, shared some common species, but that only 14 tree species 

are common to all four habitats. Species which are dependent on other biota for food can be 

predicted from the occurrence of that species, e.g. many bumble bees and butterflies depend 

on specific plants for pollen and nectar and continuity of flowering so that food supply will be a 

factor that may constrain population viability and hence actual species occurrence.  

 

4.2.3 Existing in-situ sampling sites  

Tropical ecological studies and forest conservation initiatives mainly focus on recording field 

data with an emphasis on floristic observations (Phillips et al 2003). Observations of faunal 

species are less developed, probably because it requires specific expert knowledge and a 

greater time investment. In practice, there are also major taxonomic, spatial and temporal 

gaps in available knowledge and information (Gilman et al 2011). 

The oldest series of in-situ plot observations was set up by Alwin Gentry from the University of 

Missouri in 1971 (Gentry 1982). Gentry plots have not been used for the monitoring of 

changes in biodiversity, but for describing the variation within, and between, geographic areas 

predominantly in Latin America. Each plot is 0.1 ha and is composed of 10 subplots, each 

2×50 m. He developed a sampling design for a rapid inventory of diversity in species rich 

tropical forests27. He placed 10 contiguous long, but rather narrow transects (about 2×50 m) 

in what were considered to be relatively homogeneous forests. The data consist of 

measurements of Diameter at Breast Height (DBH) of every individual tree in each transect. 

This system has later been adopted by the Instituto Nacional de Pesquisas Da Amazônia 

(ANPA) in a modified way in its monitoring system RAPELD, a Brazilian acronym for rapid 

monitoring in LTER systems (Magnusson et al. 2005). The system consists of making a long 

axis (250 m) of individual plots along the isocline, using different widths of plot for different 

taxa, and distributing the plots regularly across the landscape being sampled. The plots are 

being used in long-term ecological studies and therefore their location and access are carefully 

described. Other organisms, life stages and functional groups are measured in plots or 

subsamples narrower than those used for plants along the entire 250 m (Magnusson et al 

2005).  

The Amazon Forest Inventory Network (Rede Amazônica de Inventários Florestais, RAINFOR) 

has developed standards for establishing and monitoring forest plots, including soil and foliar 

sampling, which are used widely in the Amazon, Africa and Australia. Since 2001 RAINFOR has 

implemented a stratified ground-based forest monitoring network across Amazonia using in-

situ and EO approaches to determine ecosystem service impacts of extreme drought (Phillips 

et al 1998). The African Tropical Rainforest Observation Network (AfriTRON) led by the 

University of Leeds, is developing a parallel initiative in Africa (Lewis et al, 2009). The Forest 

Plots portal hosts access to data from many individual researchers and networks including 

RAINFOR, AfriTRON, Biodiversity and Ecosystem Functioning in Degraded and Recovering 

Amazonian and Atlantic Forests (ECOFOR), The Brazilian Program for Biodiversity Research 

(PPBio), the Tropical Biomes in Transition project (TROBIT) and the Tropical Forests in the 

Changing Earth System project (T-FORCES)28. 

 

 

                                           
27

 http://www.mobot.org/MOBOT/research/gentry/transect.shtml  
28 http://www.forestplots.net/  

http://www.mobot.org/MOBOT/research/gentry/transect.shtml
http://www.forestplots.net/
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Subplot Width 

(m) 

Size 

(ha) 

Understory 2 0.05 

Shrub/tree DBH > 1 

cm 
4 0.1 

Shrub/tree DBH > 

10 cm 
20 0.5 

Shrub/tree DBH> 

30 cm 
40 1 

 

Table 4.2.3.1 ANPA-RAPELD subplot characteristics in the 250 m transects for measuring 

vegetation cover in a tropical forest. 

The Chinese Forest Biodiversity Network (CForBio) was initiated in 2004 to study forest 

biodiversity in China. The CForBio sites have mainly focused on tree species and species 

interactions, biotic relationships and small-scale dispersal. Important suggestions for future 

research are the evaluation of the effects of climate change on forest composition and the 

application of new technologies, such as EO, to improve current monitoring of forest 

biodiversity change (Feng et al. 2016).  

The China Biodiversity Observation Network (China BON) was initiated in 2011 and is 

supported by the Ministry of Environmental Protection of China. There are more than 500 

sampling sites (counties, approximate 20% of the number of counties in China), with >8000 

line transects and point transects. The objectives of China BON are to detect changes in 

species composition, distribution and population dynamics, assess threats to target species 

and to analyze conservation policy efficiency. The project is currently focused on the 

monitoring of species diversity of mammals, birds, amphibians, butterflies and plants. National 

standards and field protocols are being implemented within the network. Participants include 

more than 400 universities, research institutes, protected area staff and civil societies. 

As shown above in the examples and the forest plots portal, networks are currently being 

developed by researchers, institutes, national agencies and international NGOs acting 

cooperatively at various spatial scales in order to achieve shared objectives. A monitoring 

network should include sufficient sampling sites to guarantee a statistically valid number of 

observations of each phenomenon (Steel et al. 2013). Sufficient, but not redundant replication, 

within an observation network makes it possible to draw statistical inferences from defined 

populations. However, some of the observations could be replaced by estimates from EO 

observations (Lang et al. 2015). When planning an observation network, it is important that 

the monitoring observations will be able to capture likely changes in habitat and species 

distributions in terms of potential alterations in ecological communities and ecosystems. Shifts 

in biome boundaries and between different climate change scenarios also need to be included.  

There are also socio-economic and governance benefits related to in-situ observation 

networks. Observation networks need to be cost effective and reduce the variability of the data 

obtained. Through coordinated management activities, a well-designed network can optimize 

the use of limited resources for governance and secure funding mechanisms, staff training and 

capacity building. A consistent assessment of the costs of biodiversity measurement is 

essential in order to minimize the costs for a given level of information needed (Targetti et al. 

2014). Given the uncertainties about future climate change and responses of ecosystems, 

there is a need to systematically monitor and study changes. Establishing ecosystem baselines 

and monitoring gradual changes through site networks, using standardized techniques, can 

enable the separation of site-based influences from global changes in order to provide a better 

understanding of ecosystem responses to global change. Alternative adaptation options also 

need to be included (Gilman et al. 2008).  
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4.2.4 Sampling bias and monitoring costs 

The establishment of observatory networks in the tropical forests on  Earth represents a major 

challenge. The Amazon basin alone covers about 7 million km2. Therefore, even a sparse 

coverage, with one sample site per 10,000 km2, would still require about 700 sampling sites 

(Magnusson et al 2005). Time and budget limitations restrict the potential number of sites and 

investment at each site, but on the other hand an incomplete coverage of data makes the 

observations less valuable (Reddy & Dávalos 2003). It is therefore essential to have an 

objective sampling design that ensures that a minimal number of representative samples are 

obtained and that there is no duplication, as has been carried out in the long-term monitoring 

system of the Countryside Survey in Britain (Bunce et al. 1996). Metzger et al (2013) have 

produced a statistical classification of global bio-climates which could form an appropriate 

framework, especially if linked to altitudinal gradients because these are critical to determine 

different types of biodiversity in many tropical rain forest regions. This concept is further 

described at the end of this section.  

The costs of installing the RAPELD plot system are rather high, but it is also possible to use the 

data for integrated studies. The costs for installation and surveys of flora, fauna, biomass, 

stocks and fluxes of the system in Reserva Ducke near Manaus is about US$ 300,000 

(Magnusson, 2005) which leaves scope to search for a more time-efficient and cost-effective 

system. 

It is important to realize that in practice, areas within easy-access and close proximity to 

populated places or busy travel routes, are likely to have higher sampling intensities because 

of reduced travel times. In addition to conveniently accessible areas, biodiversity recorders 

tend to favor areas that they presume will reward them with frequent sightings of novel 

species. Thus, well-sampled areas appear to be more species rich than poorly sampled areas; 

this may therefore generate a bias (Reddy and Dávalos 2003). This includes protected areas 

and those areas with high biodiversity. For instance, in Thailand, the three provinces with the 

highest plant collection density were those associated with national parks and mountains. Such 

places are better sampled because they are the preferred study areas of researchers in an 

otherwise transformed landscape (Parnell et al. 2003). The size of the plots used can also lead 

to the identification of false differences between forests. Thus, Phillips et al (2003) concluded 

that using sample units of 0.1 ha or 1.0 ha, can lead to differences in species quantity and 

diversity estimation. Effort is therefore needed to identify the ideal size for sample units. 

Literature on monitoring activities reports a wide range of costs and effort for the 

measurement of different indicators with various results. Schmeller and Henle (2008) reported 

for Europe an average 17.6 person days per site for high precision biodiversity surveys of plant 

species, while Bisevac and Majer (2002) considered in an Australian study that 0.67 person 

days per site were sufficient for surveying vegetation in restored areas. Geijzendorffer et al 

(2016) also estimated the costs of monitoring farmland in the EU and provide a detailed 

breakdown of the costs between habitat monitoring, compared with various groups of species. 

The dominant cost and time components for monitoring in tropical forests depend primarily on 

the variability of travel time to sites. Even if sampling protocols and objectives are similar, 

there will be major differences in the time required to sample different ecosystems because of 

variations in terrain and habitat complexity. Thus, the time required for habitat mapping is 

mainly related to landscape diversity and the many associated habitat categories of partially 

modified tropical forest ecosystems, compared with highly modified habitats encountered in 

agricultural ecosystems.  

Since in-situ monitoring efforts cannot realistically be extended across all taxa, choices have to 

be made as to which biodiversity components should be monitored, the number of sampling 

units to be taken and the spatial and temporal distribution of survey activities sampling to be 

determined (Yoccoz et al, 2001). A monitoring scheme that is able to detect changes and 

trends is based on three considerations (Couvet et al, 2011): 

The extent of the site to be surveyed, 

The density of sampling locations within the area,  

The observation effort required per location.  
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The relative importance given to each of these three parameters within a monitoring scheme 

has major consequences on its ability to address various scientific questions. It is also 

important to consider the anticipated rate of change that can be detected. The observation 

effort must therefore be described in terms of the necessary resolution and frequency of 

sampling to achieve sensitivity to small, short-term changes or the detection of larger changes 

over longer periods. The latter has lower cost but although the information may be acceptable 

for policy development, it could be too infrequent to inform adaptive forest management for 

biodiversity. 

Observations, focusing on individual sites can be very important for ecosystem ecology, e.g. by 

characterising the extent of nutrient release after deforestation (Ricklefs and Miller 2000). A 

site based, targeted monitoring approach can be used for discrimination between a priori 

hypotheses (Nichols and Williams 2006). For example, NEON29, an in-situ monitoring system in 

the USA designed to observe ecosystem processes, defines 20 ecological domains with three 

sites per domain and additional re-locatable sites, in which different ecological variables are 

monitored (Pennisi, 2010). 

An alternative system could consist of a high density of sites that allows for the detection of 

period fine-grained spatial variations of biodiversity in the context of general trends over a 

large territory and longer time. Since total observation efforts are limited, such schemes result 

in a coarse-grained resolution per site, due to the limited observation effort per site and are 

considered as extensive monitoring schemes. Climate monitoring and long-term data series, in 

general, illustrate the benefits of such a surveillance approach. With targeted scientific 

protocols, this approach can combine passive monitoring to address patterns, targeted 

monitoring to test hypotheses, and adaptive monitoring to evaluate the effects of various 

policies. They can deliver major information about the trends in biodiversity and specific 

species (Soldaat et al. 2007). 

 

4.2.5 Habitat Data: linking in-situ and Remote Sensing 

An in-situ habitat monitoring scheme should not be implemented in isolation, but should be 

complemented by additional targeted monitoring of specific trends, for instance a focus on 

endangered species, on biodiversity hotspots or sinks, use of remotely sensed information or 

the integration of biodiversity data from existing monitoring schemes (Geijzendorffer et al, 

2016). There are several advantages in the use of in-situ monitoring of ‘habitats’ because they 

effectively integrate species and RS information: 

Aerial photographs, especially infra-red, can be used to estimate habitat extent and its change 

over time e.g. Ståhl et al. (2011), 

Remote sensing data from satellites can be linked to in-situ maps of habitats in larger units, 

(e.g. Van den Borre et al., 2011), 

Relationships between habitats and species composition or particular taxa important to 

biodiversity can be used to link habitat records to other biodiversity indicators, such as species 

(e.g. Santo-Silva et al 2016), 

Habitat records can be linked to landscape level changes over time and to vegetation species 

composition (e.g. Laurance et al 2011). 

 

4.2.6 A possible structure for integration and harmonization 

Monitoring biodiversity and ecosystems has to be organised in such a way that the data is 

sensitive to various aspects for any specific question regarding biodiversity change issues as 

well as that the data should be taken it into account in broader assessments (UNEP-WCMC 

2009). To align with this diversity of knowledge demands in decision-making, organising the 

process of data gathering and analysis needs to be highly flexible, while at the same time 

employing core methodologies that ensure transparency, scientific rigor, independence and 

minimal bias. As elaborated further in chapter 4.4., an important criterion could be the use of 

strata as discrete and mutually exclusive subsets of the study regions in the sampling design. 

                                           
29

 http://www.neonscience.org/  

http://www.neonscience.org/
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This allows for the analysis of subsets of the study regions that are of interest for the reporting 

and will also improve the precision of estimates. It also allows a larger sample size for smaller 

but important sub-regions that otherwise risk insufficient sampling if implementing a simple 

random or simple systematic design. A global stratification of bio-climates has been produced 

recently, as described by Metzger et al (2013) and is freely available through the GEO portal. A 

stratified monitoring system has been proposed with the following steps: 

A framework for monitoring and analysis will be constructed from separate databases for 

South America, Africa, Asia and the Asian Islands including Australia. The underlying objective 

of separate analyses is that there are fundamental differences between the structure and 

species composition of tropical forests at a continental level because of movement of the land 

masses over geologic time. The outputs will be summary maps of tropical rain forests in each 

continent using available information. 

The procedure will then be to analyze the strata that contain tropical forest as defined by the 

global bio-climate classification (Metzger et al, 2013, Figure 4.2.6.1).The objective will be to 

determine the major environmental subdivisions coherent within, and across, the continents. 

The outputs will be tables of frequencies and maps of the World Environmental Climate Classes 

for each continent. 

Each climate stratum will then be divided into sub-divisions according to appropriate altitudinal 

ranges. The objective would be to capture the different types of tropical forests known to be 

present at contrasting elevations. The outputs will be descriptions of the altitude climate 

classes for each continent. 

The procedure will then automatically map land cover classes using EO images within each of 

the sub-divisions. The objective is to introduce the first tier of information of direct relevance 

to biodiversity. Iso-clustering would then be used to reduce the complexity of each of the sub-

divisions and to provide a sample framework. The outputs would be maps of the principal 

types of tropical rain forests in each continent. 

The exact location of every existing in-situ sample will then be identified within the sample 

design constructed by steps 1-4. The objective is to identify the extent of the existing coverage 

and in particular, to determine where there are currently no samples. The outputs will be 

tables of the existing data sets according to the maps of stage 4. Note that none of the steps 

1-5 require field visits. 

Representative sample sites will then be located where in-situ observations are required for 

additional survey to fill the gaps identified in step 5 and to facilitate the collection of ground-

truth data. The outputs will be tables of GIS locations of the required sites together with 

strategic maps. 

The range of life forms will then be recorded in these sample sites, using existing standard 

protocols of plant life forms (Bunce et al 2013). This survey will not require species 

information, so the sites will be relatively rapid to record. The objective is to prepare a 

database for selection of a reduced number of sites for species surveys. The output will be a 

handbook for standardized recording of life forms in tropical forests. 

Classify the range of life forms into relatively homogeneous groups using iso-clustering. These 

classes will provide a key measure of biodiversity at the habitat level. The objectives are to 

reduce the number of sites where species data need be recorded in the field and to produce 

habitat classifications that are comparable between continents. Existing data will also be 

analyzed at this level. The output will be a handbook for standardized recording of biodiversity 

in tropical forests, as described in step 7. 

Carry out detailed field surveys of biota, such as plants and mammals, for the assessment of 

biodiversity within representative habitats using the monitoring systems described earlier. The 

objective is to produce integrated assessments of biodiversity. Different taxonomic groups can 

then be progressively surveyed by appropriate experts, because of the relatively small number 

of formally selected, representative sites. The outputs will be a detailed time and location 

specific database that can be used for ground-truth of EO images and for specification of 

observations in different regions. 
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Figure 4.2.6.1. The global stratification in which 125 global strata are aggregated into 18 

global environmental zones. The stratification has a 30 arc sec resolution (0.86 km2 at the 

equator). The tropical environmental zone (extremely hot and moist) consists of ten global 

strata (Metzger et al 2013). 

 

4.2.7 Key References for section 4.2 

Bisevac, L. and Majer, J., 2002. Cost effectiveness and data-yield of biodiversity surveys. J. 

Roy. Soc. West Aust. 85: 129–132. 

Bridgewater, S., Ratter, J.A. and Ribeiro, J.P., 2004. Biogeographic patterns, b-diversity and 

dominance in the Cerrado biome of Brazil. Biodivers. Conserv. 13: 2295–2318. 

Bunce, R. G. H., Barr, C. J., Clarke, R. T., Howard, D. C. and Lane, A. M. J. (1996). Land 

classification for strategic ecological survey. J. Envir Manag. 47: 37-60. 

Bunce, R.G.H., Metzger, M.J., Jongman, R.H.G., Brandt, J., de Blust, G., Elena Rossello, R., 

Groom, G.B., Halada, L., Hofer, G., Howard, D.C., Kovář, P., Mücher, C.A., Padoa-

Schioppa, E., Paelinx, D., Palo, A., Perez-Soba, M., Ramos, I.L., Roche, P., Skånes, H. 

and Wrbka, T. 2008. A Standardized Procedure for Surveillance and Monitoring 

European Habitats and provision of spatial data. Landsc.Ecol., 23:11-25 

Bunce, R.G.H, Bogers, M.M.B., Evans, D., Halada, L., Jongman, R.H.G., Mucher, C.A., Bauch, 

B., de Blust, G., Parr, T.W. and Olsvig-Whittaker, L 2013. The significance of habitats as 

indicators of biodiversity and their links to species. Ecol. Ind. 33:19 - 25. DOI: 

10.1016/j.ecolind.2012.07.014  

Calow, P. (Ed.), 1999. The Blackwell’s Concise Encyclopedia of Ecology. Wiley-Blackwell. 

Couvet, D., Devictor, V., Jiguet, F. and Julliard, R., 2011. Scientific contributions of extensive 

biodiversity monitoring. C. R. Biologies 334: 370–377 

Da Silva, C. J., Nolan, K-S,S., Ikeda, S., Lopes, C.R.A.S., da Silva Nunes, J.R., Carniello, M.A., 

Mariotti, P.R., Lopes, W., Morini, A., Zago,B.W., Lima Façanha, C., Albernaz, R., 

Loureiro, E., Gomes, I., Flores de Oliveira, R., Jonatar, W., Costa de Arruda, J., Sander, 

N.L., de Freitas Junior, J.S., Pinto, V.R., Cardoso de Lima, A. and Jongman, R.H.G. 

2015. Driving Biodiversity change in the Pantanal-Amazon Ecotone, Mato Grosso 

(Brazil). Land Use Policy, 47:163-178 

Dennis, R.L.H., and Shreeve, T.G., 1996. Butterflies on British and Irish Offshore Islands. Gem 

Publishing Company. 

Feng, G., Mi, X., Yan, H., Li, F. Y., Svenning, J.C., and Ma, K. 2016. CForBio: a network 

monitoring Chinese forest biodiversity. Sci. Bull. 61(15):1163–1170, DOI 

10.1007/s11434-016-1132-9 

Geijzendorffer, I.R., Targetti, S., Schneider, M.K., Brus, D.J., Jeanneret, P., Jongman, R.H.G. 



130 

 

et al 2016. How much would it cost to monitor farmland biodiversity in Europe? J of 

Applied Ecol. DOI: 10.1111/1365-2664.12552 

Gentry, A. H. 1982. Patterns of Neotropical plant species diversity. Evol. Biol. 15:1-84. 

Gilman, E., Dunn, D., Read, A., Hyrenbach, K.D. and Warner, R. 2011. Designing criteria suites 

to identify discrete and networked sites of high value across manifestations of 

biodiversity. Biodivers. Conserv. DOI 10.1007/s10531-011-0116-y 

Haines-Young RH, Barr CJ, Black HIJ, Briggs DJ, Bunce RGH, Clarke RT, Cooper A, Dawson FH, 

Firbank LG, Fuller RM, Furse MT, Gillespie MK, Hill R, Hornung M, Howard DC, McCann 

T, Morecroft MD, Petit S, Sier ARJ, Smart SM, Smith GM, Stott AP, Stuart RC and 

Watkins JW 2000. Accounting for nature: assessing habitats in the UK countryside. 

DETR, London 

Hall, L.S., Krausman, P.R., and Morrison, M.L., 1997. The habitat concept and a plea for 

standard terminology. Wildl. Soc. Bull. 25, 173–182. 

Ichter, J., Evans, D. and Richard, D., 2014. Terrestrial habitat mapping in Europe: an 

overview. EEA Technical Report, 1/2004, pp.154 

Jürgens, N., Schmiedel, U., Haarmeyer, D.H., Dengler, J., Finckh, M., Goetze, D., Gröngröft, 

A., Hahn, K., Koulibaly, A., Luther-Mosebach, J., Muche, G., Oldeland, J., Petersen, A., 

Porembski, S., Rutherford, M.C., Schmidt, M., Sinsin, B. Strohbach, B.J., Thiombiano, 

A., Wittig, R. and Zizka, G., 2013. The BIOTA Biodiversity Observatories in Africa—a 

standardized framework for large-scale environmental monitoring. Environ Monit Assess 

184: 655–678, DOI 10.1007/s10661-011-1993-y 

Kosmidou, V., Petrou, Z., Bunce, R.G.H., Mücher, C.A., Jongman, R.H.G., Bogers, M.M.B., 

Lucas, R., Tomaselli, V., Blonda, P., Padoa-Schioppa, E. and Petrou, M. (2014) 

Harmonization of the Land Cover Classification System (LCCS) with the General Habitat 

Categories (GHC) classification system Ecol.l Ind. 36: 290 - 300. 

Lang, M., Vain, A., Bunce, R.G.H., Jongman, R.H.G., Raet, J., Sepp, K., Kuusemets, V. Kikas, 

T. and Liba, N. 2015. Extrapolation of in situ data from 1-km squares to adjacent 

squares using remote sensed imagery and airborne LiDAR data for the assessment of 

habitat diversity and extent. Environ Monit Assess 187:76, DOI 10.1007/s10661-015-

4270-7 

Laurance, W.F., Camargo, J.L.C., Luizão, R.C.C., Laurance, S.G., Pimm, S.L., Bruna,E.M., 

Stouffer, P.C., Williamson, G.B., Benítez-Malvido, J., Vasconcelos, H.L., VanHoutan, 

K.S., Zartman, C.E., Boyle, S.A., Didham, R.K., Andrade, A. and Lovejoy, T.E.,2011. 

The fate of Amazonian forest fragments: a 32-year investigation. Biol.Conserv. 144, 

56–67, http://dx.doi.org/10.1016/j.biocon.2010.09.021 

Lewis, S.L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T.R., Ojo, L.O., Phillips, 

O.L., Reitsma, J.M., White, L., Comiskey, J.A., Djuikouo, M., Ewango, C.E.N., 

Feldpausch, T.R., Hamilton, A.C., Gloor, M., Hart, T., Hladik, A., Lloyd, J., Lovett, J.C., 

Makana, J., Malhi, Y., Mbago, F.M., Ndangalasi, H.J., Peacock, J., Peh, K.S., Sheil, D., 

Sunderland, T., Swaine, M.D., Taplin, J., Taylor, D., Thomas, S.C., Votere, R. and Wöll, 

H. 2009. Increasing carbon storage in intact African tropical forests. Nature 477: 1003-

1006. 

Magnusson, W.E., Lima, A.P., Luizão, R., Luizão, F., Costa, F.R.C., Volkmer de Castilho, C. and 

Kinupp, V.F. 2005. Rapeld: a modification of the gentry method for Biodiversity surveys 

in long-term ecological research Sites. Biota Neotropica v5, 

http://www.biotaneotropica.org.br 

Metzger, M.J., Bunce, R.G.H., Van Eupen, M. and Mirtl, M., 2010. An assessment of long term 

ecosystem research activities across European socio-ecological gradients. J. Environ 

Manag, 91, 1357–1365 

Metzger, M.J., Bunce, R.G.H. Jongman, R.H.G. Sayre, R., Trabucco, A. and Zomer R. 2013. A 

high resolution bioclimate map of the world: a unifying framework for global 

biodiversity research. GEB, DOI: 10.1111/geb.12022 

Nichols, J.D. and Williams, B.K. 2006. Monitoring for conservation, TREE 21:668–673. 

Odum, E.P., 1963. Ecology – Holt. Rinehart and Winston, New York.  

Parnell, J.A.N., Simpson, D.A., Moat, J., Kirkup, D.W., Chantaranothai, P., Boyce, P.C., 

Bygrave, P., Dransfield, S., Jebb, M. H. P., Macklin, J. Meade, C., Middleton, D.J., 

Muasya, A.M., Prajaksood, A., Pendry, C.A., Pooma, R., Suddee S. and Wilkin, P., 2003. 

http://dx.doi.org/10.1016/j.biocon.2010.09.021
http://www.biotaneotropica.org.br/


131 

 

Plant Collecting Spread and Densities: Their Potential Impact on Biogeographical 

Studies J. Biogeography, 30 (2):193-209 

Pennisi,E., 2010. A groundbreaking observatory to monitor the environment, Science 318: 

418–420. 

Phillips, O.L., Malhi, Y, Higuchi, N, Laurance, W.F., Núñez, P.C. Vásquez, R.M. Laurance, S.G., 

Ferreira, L.V., Stern, M., Brown, S. and Grace, J. 1998. Changes in the carbon balance 

of tropical forest: evidence from long-term plots. Science 282: 439-42 

Phillips, O.L. Vásquez Martínez R., Núñez Vargas,P., Monteagudo. A.L., Chuspe Zans. M.E., 

Galiano Reddy, S. and Dávalos, L. M. 2003. Geographical sampling bias and its 

implications for conservation priorities in Africa. J. Biogeogr. 30: 1719-1727. 

Raunkiaer C. 1934. The life forms of plants and statistical plant geography, being the collected 

papers of C. Raunkiaer. Clarendon, Oxford 

Reddy, S. and Dávalos, L. M. 2003. Geographical sampling bias and its implications for 

conservation priorities in Africa. J. Biogeogr. 30:1719-1727. 

Ricklefs, R.E. and Miller, G.L. 2000, Ecology, Freeman, New York. 

Santo-Silva, E.E., Almeida, W.R., Tabarelli, M., and Peres, C.A. 2016. Habitat fragmentation 

and the future structure of tree assemblages in a fragmented Atlantic forest landscape. 

Plant Ecol 217:1129–1140, DOI 10.1007/s11258-016-0638-1 

Schmeller, D.S., Henle, K., 2008. Cultivation of genetically modified organisms: resource 

needs for monitoring adverse effects on biodiversity. Biodivers. Conserv. 17, 3551–

3558. 

Scholes, R.J., Walters, M., Turak, E., Saarenmaa, H., Heip, C.H.R., O´Tuama, E., Faith, D.P., 

Mooney, H.A., Ferrier, S., Jongman, R.H.G, Harrison, I.J., Yahara, T., Pereira, H.M., 

Larigauderie, A. and Geller, G. 2012. Building a global observing system for 

biodiversity. COSUST 4:139-146 

Soldaat, L., Visser, H., van Roomen, M. and van Strien, A. 2007. Smoothing and trend 

detection in waterbird monitoring data using structural time-series analysis and the 

Kalman filter. J. Ornithol. 148 (Suppl 2): 351–S357, DOI 10.1007/s10336-007-0176-7 

Ståhl G., Allard A., Esseen P.A., Glimskär A., Ringvall A., Svensson J., Sundquist S., 

Christensen P., Gallegos Torell Å., Högström M., Lagerqvist K., Marklund L., Nilsson B., 

and Inghe O., 2011. National inventory of landscapes in Sweden (NILS)—scope, design, 

and experiences from establishing a multi-scale biodiversity monitoring system. Environ 

Monit Assess 173:579–595. doi:10.1007/s10661-010-1406-7 

Steel, E. A., Kennedy,M.C., Cunningham, P.G. and Stanovick, J.S., 2013. Applied statistics in 

ecology: common pitfalls and simple solutions. Ecosphere 4(9):115. 

http://dx.doi.org/10.1890/ES13-00160.1 

UNEP-WCMC 2009. Gap analysis for the purpose of facilitating the discussions on how to 

improve and strengthen the science-policy interface on biodiversity and ecosystem 

services: [http://ipbes.net/Documents/IPBES_2_1_INF_1.pdf]  

Targetti,S., Herzog, F., Geijzendorffer, I.R. Wolfrum, S., Arndorfer, M., Balàzs, K., Choisis, 

J.P., Dennis, P., Eiter, S., Fjellstad, W., Friedel, J.K. Jeanneret, P., Jongman, R.H.G., 

Kainz, M., Luescher, G., Moreno, G., Zanetti, T.,Sarthou, J.P., Stoyanova, S., Wiley, D., 

Paoletti, M.G. and Viaggi, D. 2014. Estimating the cost of different strategies for 

measuring farmlandbiodiversity: Evidence from a Europe-wide field evaluation. Ecol 

Indicators 45 434–443. 

Vanden Borre, J., Paelinckx, D., Mücher, C.A., Kooistra, L., Haest, B., De Blust, G. and 

Schmidt, A., 2011. Integrating remote sensing in Natura 2000 habitat monitoring: 

prospects on the way forward. J. Nat. Conserv. 19 (2), 116–125. 

Von Humboldt, A. and Bonpland, A., 1807. Essay on the Geography of Plants. University of 

Chicago Press, p. 274, Reprint 2009. 

Woodward, F.I., 1987. Climate and Plant Distribution. Cambridge University Press, Cambridge 

Studies in Ecology, p. 174. 

Yoccoz, N.G., Nichols, J.D. and Boulinier, T., 2001. Monitoring of biological diversity in space 

and time, TREE 16: 446–453. 

  



132 

 

4.3 MAPPING FOREST EXTENT AND CHANGES 

 

4.3.1 Introduction 

The past decades have seen a growing demand for accurate, reliable information on forest 

extent and change estimates. Such a request comes from different policy frameworks such as 

the UNFCCC, but also the UNCBD which the EBVs have been proposed to provide support to. 

Two out of the five selected EBVs for this sourcebook benefit directly from such estimates 

(Ecosystem extent and fragmentation, Disturbance regime), while the three other EBVs 

(Vegetation phenology, Net primary productivity (NPP), Ecosystem structure) benefit indirectly 

(e.g., forest boundaries, period of growth/ stability as a factor of NPP, and forest structure). 

This section presents some case studies that illustrate different forest monitoring options in 

terms of data and methods accross the pan-tropical region. 

The first example of section 4.3 provides a simple, robust and cost-effective method for forest 

cover change detection in Central Africa. The case study demonstrates how to present change 

estimates compliant with IPCC reporting requirements. The second example takes place in 

Colombia with the use of MODIS data time-series. Inclusion of SAR data to improve result of 

land cover classification is tested. A third example in Southern India compares some forest 

cover change detection techniques and discusses the trade-off betweeen costs and overall 

accuracies. For more methods and datasets, we recommend to check section 5 on emerging 

approaches. 

 

4.3.2 Forest cover change mapping in Gabon 

Ronald E. McRoberts, United States Forest Service, USA 

Ghislain Moussavou, World Resources Institute, Gabon 

Christophe Sannier, SIRS, France 

 

4.3.2.1 Country background 

Gabon is an equatorial country located in the Congo-Ogoué basin region of Central Africa with 

total area, including land and water, of 267,667 km². Forests are mostly evergreen, dense-

humid, equatorial forest with mangrove on the coast and swamp forests. Deforestation and 

degradation rates are expected to be small in Gabon, mainly because of the small human 

population (1;8 million inhabitants) mostly concentrated in urban settlements. Agriculture 

activities are sparse with subsistence agriculture mostly concentrated in the north of the 

country east of Equatorial Guinea and south of Cameroon around Oyem. However, limited 

industrial plantations have started to be developed in other parts of the country over the last 

few years. A new forest code and 13 national parks contribute since 2002 leading to 

establishing sustainable forest management plans in many forest concessions and protected 

areas, all of which contribute to preserving Gabon’s forest cover. 

Gabon has not yet adopted a national definition of forest. However, the UNFCCC (2006) 

defines forest as “a minimum area of land of 0.05–1.0 hectare (ha) with tree crown cover (or 

equivalent stocking level) of more than 10–30 per cent with trees with the potential to reach a 

minimum height of 2–5 meters at maturity in-situ.” For purposes of assessing change, the 

largest values in the UNFCCC ranges were selected for defining forest land in Gabon: minimum 

area of 1 ha, tree crown cover of at least 30%, and minimum potential height at maturity of 5 

m. Tree plantations are excluded from the forest definition, i.e., rubber or oil palm plantations 

are considered non-forest. 

 

4.3.2.2  Objectives 

The study included three main objectives: 

(1) To assess the possibility of producing wall-to-wall forest cover maps based on available 

Remotely Sensed data archives with consideration given to persistent cloud cover and 

the lack of direct ground satellite reception in Gabon; 

(2) To produce an accurate assessment of forest cover in Gabon for which there has been 

no detailed previous work; 

(3) To develop a baseline for two reporting periods: 1990-2000 and 2000-2010. 
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4.3.2.3 Map construction 

Forest/non-forest (F/NF) maps and forest change maps were constructed using Landsat and 

Terra ASTER data and the forest definition as previously described. Due to persistent cloud 

cover in Gabon, very little cloud-free imagery was available. Therefore, a compositing 

procedure was applied to individual classifications of selected images for each scene. Images 

were selected starting with the image closest to the reference year with cloud gaps filled 

gradually with data from other image scenes. Each selected image was classified using an 

unsupervised procedure with an interactive grouping of spectral classes in F/NF thematic 

classes. A minimum mapping unit of 1 ha was applied to ensure compliance with the forest 

definition, and classification artefacts were removed by visual assessment. An initial F/NF map 

was produced for 2000, and the same procedure was applied to 1990 and 2010 for selected 

image scenes, but using the 2000 F/NF map to provide context for predicting forest cover 

change. Thus, F/NF change maps were produced from the 2000 F/NF maps for 2000-1990 and 

2000-2010 (Figure 4.3.1.3). 

 

 
Figure 4.3.1.3. Forest cover change maps for 2000-2010 with locations of deforested areas 

highlighted in red and regenerated areas hihglighted in blue. 

 

 

4.3.2.4 Reference data 

The sources of reference data were primarily SPOT 5 with a 2.5m pixel size, ALOS PRISM & 

AVNIR-2, and RapidEye satellite imagery, all with finer spatial resolution than the imagery 

used for map construction. The reference data were initially categorical (F/NF), but were 

aggregated over blocks of contiguous pixels to produce block-level percentages of forest cover. 

The reference data were collected and processed by trained thematic experts independently 

from the map construction effort.  

A probability sampling design with a systematic component was used to acquire the reference 

data. Gabon was tessellated into 20 x 20-km blocks, and one 2 x 2-km primary sample unit 

(PSU) was randomly selected from within each block. In this manner, 665 PSUs were selected 

for the whole country. This approach ensured that all areas of the country were sampled. 

Within each PSU, 50 secondary sample units (SSU) in the form of Landsat pixels were 

randomly selected for the purpose of assessing accuracy via error matrices. 
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4.3.2.5 Analyses 

A model assisted, generalized regression (GREG) estimator as described in Sannier et al. 

(2014) was used with the combination of the map data and the PSU-level reference data. 

Designating the Reference sample as SI, population means were estimated for the two 

response variables: (1) proportion forest for which 
tref,

ii yz 
 is the reference observation for i  

SI for the tth year and 
tmap,

iẑ
 is the corresponding map prediction, (2) net proportion 

deforestation for which 
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, m=665. In this manner, the area of forest cover for each of 

1990, 2000, and 2010 and area of net deforestation for each of the two 10-year intervals were 

estimated by multiplying the proportions by the total area of Gabon. 

 

 

4.3.2.6 Estimates 

 The resulting forest cover estimates for 1990, 2000 and 2010 and forest cover change 

estimates for 1990-2000 and 2000-2010 are reported in Table 4.3.1.5. 

 

Table 4.3.1.5. Estimates* 

 

Estimate 
Area of forest cover (ha) 

Area of net deforestation 

(ha) 

2000 1990 2010 1990-2000 2000-2010 

Map estimate 23,663,416 23,725,862 23,660,939 61,258 4,142 

GREG 

estimate 
23,652,023 23,739,451 23,633,596 86,240 20,092 

95% CI width 70,396 66,360 69,647 27,655 25,072 
*Total area=26,766,700 ha 
 

 

 

4.3.2.7 Discussions and conclusions 

The Forest area and area change estimates were the first reliable national estimates of the 

extent and change of the Gabonese forest for which the uncertainty was estimated and 

minimized. It is worth noting that previously the area of forest in Gabon based on regional 

assessments was thought to represent around 85% of the territory which is around 1 million 

hectares less than the estimates from this study. In addition, this study provided direct input 

to drafting Gabon’s national climate action plan for the forest sector and the development of a 

national land use plan. 

The method developed is simple, robust and cost-effective. Subsequent to this study, the 

methodology has been transferred to the Gabonese Agency for Space Observations Studies 

(AGEOS) which is now capable of producing their own updates of the forest cover map. An 

update was effectively produced by AGEOS for 2015 and will be published soon. 

Forest area and area change estimates could be produced from a sampling approach alone, but 

results show that the combination of sample data with a wall-to-wall map can reduce the 

number of sample units required to provide the same precision by a factor close to 60 to 

estimate forest area. In this case, this would mean increasing the sample size from 665 to 

almost 40,000. In addition, even though producing wall-to-wall maps of forest area and forest 
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cover change is time-consuming and requires specialized staff and equipment, their use can be 

extended to other purposes such as forest management, land use planning and near-real time 

national forest monitoring system to detect illegal logging. 

The use of Earth Observation can contribute at two levels (i) for collecting sample data to 

produce a “ground truth” reference dataset based on the independent visual interpretation of 

satellite imagery, and (ii) for producing the wall-to-wall F/NF map. The availability of current 

satellite systems is compatible with a near-real time national forest monitoring system. Finally, 

the method was successfully applied in other Congo basin countries including Cameroon, 

Central African Republic and Republic of Congo as well as part of Bolivia for the Pando 

Departamiento. 
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4.3.3 Forest cover mapping of Colombia using a multi-year data-integration 

approach 

 

Rene Colditz, Comision Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico 

Jesus Anaya, Universidad de Medellín, Colombia 

 

The tropics are known for the significant cloud and fog cover affecting optical satellite image 

observations. Some areas have been described as being persistently (Helmer et al. 2010) or 

pervasively cloudy (Holden and Woodcock 2016). Additionally, fog occurrence is an important 

indicator to determine the habitat extent and richness of epiphytes, a climatic feature that has 

been described using MODIS night-time data (Obregon et al. 2014). However, in the context of 

optical satellite image classification of forest extent, fog and clouds considerably restrict the 

amount of useful observations. For this reason, cloud occurrence is very important when 

defining the quality of a pixel (Leinenkugel et al. 2013).  

Two approaches are available to quantify forest cover in areas with persistent clouds: increase 

the temporal resolution of optical observations or see through the clouds with radar 

wavelengths. The capability of radar to map natural forest in regions affected by persistent 

clouds and other atmospheric effects (Saatchi et al. 2011; Thapa et al. 2014) is well known. 

Another approach to quantify forest extent in areas where consistent periodicity is difficult to 

achieve is the selection of the best observations from a time series (Broich et al. 2011). 

Integrating these datasets has also been found useful; for example when merging the high 

spectral resolution of optical sensors with the long wavelength of radar (Reiche et al. 2015). 

A case study of land cover was developed in Colombia, a tropical country that is subject to 

cloud persistence, especially in the Pacific Coast where the humid currents from the ocean and 

the Andes Mountains promotes orographic cloud formation (Poveda et al. 2006). A multi-year 

data-integration approach was used by Anaya et al. (2015) in order to map land cover. Data 

for time series generation was based on 16-day vegetation index composite data (MOD13A1) 

from the Moderate Resolution Imaging Spectroradiometer (MODIS). TiSeG, a software that 

explores the MODIS data quality flags and provides indicators on spatial and temporal data 

availability (Colditz et al. 2011; Colditz et al. 2008), was used to remove low quality 

observations from a five-year period 2009-2013. Most removed pixels were contaminated by 

clouds. For the study area, on average, 50.4% of the observations from 2001 to 2013 where 

classified as invalid pixels. Given the large interval (usually months) between valid 

observations (Figure 4.3.2), an interpolation of the annual time series of 2011, which 

maintains typical or expected phenological characteristics, was not possible. Therefore invalid 

observations of 2011 were substituted by valid observations from adjacent years. In a second 

step this multi-year time series was used for an improved land cover classification. Ancillary 

variables such as the Phased Array L-band Synthetic Aperture Radar (PALSAR) were included 

to evaluate the impact on accuracy. 
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Figure 4.3.2. Multi-year data integration for time series generation. The hypothetical data 

should represent an annual time series with bi-modal characteristics, typical for agriculture 

with two growing seasons. (A) Time series of 2011 of valid (large circles) and invalid (small 

circles) observations connected by a grey line and linear temporal interpolation of valid data 

shown by a black line; (B) annual time series from valid observations of five years in different 

colors; (C) integrated time series from data of 2011 ± 1 year; and (D) integrated time series 

from 2011 ± 2 years, based on (C). Void circles and grey lines in (C) and (D) indicate valid 

data and linear interpolation of annual data from (B) (Anaya et al. 2015). 

 

From this study a total area of 526,667 km2 of broadleaf forests were estimated in Colombia, 

mostly located in the Amazon basin and the Pacific Coast. The data analysis for the above-

mentioned years suggests that approximately 4% of the study area were under persistent 

cloud cover. The classification accuracy improved by 10% in comparison to simply eliminating 

invalid pixels, and by 3% when using MODIS data without quality analysis. Additional tests 

including ancillary information, such as elevation, increased the accuracy by another 1.5%. 

While radar imagery did not improve the classification accuracy in this case study, inclusion of 

micro-wave data is suggested for monitoring tropical forests, due to the persistence of clouds 

and capabilities to reveal information on forest structure. The time series approach builds upon 

two important assumptions: 1) no notable temporal shifts or differences in magnitude in 

vegetation growth between all years and 2) no land cover change during the multi-year period. 

Several extensions are possible, such as step-wise quality-dependent assimilation based on 

ranked indicators (Colditz et al. 2011), more advanced fitting functions (Chen et al. 2004; 

Jönsson and Eklundh 2004), or piece-wise approaches (Viovy et al. 1992). Alternatively 

reduced operating costs of low-flying unmanned vessels such as drones, kites, planes or 

helicopters may provide a cost-effective means to obtain site-specific data at nearly any time. 
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4.3.4 Changes in tropical forest: assessing different detection techniques 

 

Cristina Tarantino, CNR-Institue of Atmospheric pollution, Bari-Italy 

Palma Blonda, CNR-Institue of Atmospheric pollution, Bari-Italy 

Maria Adamo, CNR-Institue of Atmospheric pollution, Bari-Italy 

Madhura Niphadkar, Ashoka Trust for Research in Ecology and the Environment (ATREE), 

Bangalore, India 

Richard Lucas, The University of New South Wales, Sydney, Australia 

 

4.3.4.1 Introduction 

The monitoring of forest ecosystem state involves the detection of changes which may have 

occurred in the specific area. The operational definition of ecosystem mapping and monitoring 

proposed by Maes et al.(2014) suggests that ecosystem changes can be quantified through 

Land Cover/Land Use (LC/LU) class changes. The detection of LC/LU class changes implies not 

only the identification of when and where they may have occurred, but also the definition of 

both the type and magnitude of target (e.g., forest) class transitions from time T1 to time T2, 

with T1<T2, along with the quantification of class modifications. The changes thus detected can 

then be used to identify anthropic and other pressures acting on the area (Nagendra et al., 

2014; Sorrano et al., 2014).  
The present study compares the data obtained through the Cross-Correlation Analysis (CCA) 

technique, developed by the American company Earthsat, Inc., with those resulting from a 

traditional unsupervised technique in the detection of changes in tropical forest ecosystem.  

The CCA technique has already been used by Koeln and Bissonnette, (2000) and Civco et al. 

(2002) to analyse High Resolution (HR) (e.g., Landsat TM) and Medium Resolution (MR) 

imagery (e.g., MERIS). More recently, Tarantino et al. (2016) have applied the CCA technique 

to Very High Resolution (VHR) data (e.g., WorldView-2) to detect grassland ecosystems 

changes. 

Focusing on a protected area in Southern India, the present study investigates the advantages 

in terms of costs and Overall Accuracy (OA) of the CCA technique. 

A brief description of materials and methods used will be followed by indications of the study 

area and input data. Thereafter, the accuracy of the results obtained and their discussion will 

provide support to the operational implementation of the CCA technique and its application to 

tropical forest monitoring. 

 

4.3.4.2 Materials and methods 

 

Study site and input data 

The present study site is a 540 km2 Tiger reserve located in the Western Ghats biodiversity 

hotspot in Southern India, named Biligiri Rangaswamy Temple Tiger Reserve (Figure 

4.3.3.2.a). The area has a heterogeneous physiography, with hills running in the North-South 

direction, and elevation ranging from 600 to 1800m above sea level. This location and its 

physiography produce a unique climate regime, due to which the site receives rainfall in two 

different seasons. These biophysical conditions allow a distinctive ecosystem to thrive on the 

area with consequent high level of diversity in endemic flora and fauna. The vegetation of the 

region has been classified into ten different types, ranging from dry scrub forest to dense wet 

evergreen forests in the higher elevation areas. The evergreen forests are found in contiguous 

areas, and also in dense patches among a mosaic of high elevation grassland area. Such 

characteristics provide for a habitat known as 'sholas'.  

The multiresolution image data set available for this area consists of: one recent VHR 

WorldView-2 (WV-2) image (Figure 4.3.3.2.c), provided by the ESA within the FP7-SPACE 

BIO_SOS project; two Landsat images and one recent Sentinel-2 data. An existing validated 

LC map (1:50000) dated 1998 (Figure 4.3.3.2.b), was used in our CCA experiments to extract 

the T1 target class layer (i.e., evergreen forest) for the detection of changes. The existing data 

were compared according to the following scheme: 

1. Change Detection (Map to Image comparison) at VHR by CCA with the WV-2 image 

(2m. spatial resolution), dated March 14, 2013, as T2 image. 

2. Change Detection (Map to Image comparison) at HR by CCA with the Sentinel-2 image 

(20m. spatial resolution), dated February 19, 2016, used as T2 image. 
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3. Change Detection (Map to Image comparison) at HR by CCA with the recent Landsat 8 

OLI (30m. spatial resolution), dated March 20, 2016 as T2 image.  

4. Unsupervised change detection at HR, by direct comparison of the NDVI indices from 

two Landsat images (Image to Image comparison) dated March 16, 1997 (Landsat 5 

TM) and March 20, 2016, as T1 and T2 images, respectively. 

The analysis carried out and the acronyms used are reported in Table 4.3.3.2.  

 

 
 

Figure 4.3.3.2. (a) Location of the Biligiri Rangaswamy Temple Tiger reserve, India. (b) 

Existing LC map dated 1998. The red rectangular area corresponds to the WorldView-2 image 

coverage. (c) Available WorldView-2 image, 2m resolution, March 14, 2013. True Color 

Composite: R=5, G=3, B=2. 
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Table 4.3.3.2. Set of experiments and acronyms used in the paper for Biligiri Rangaswamy Temple Tiger Reserve, India. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exp. Input data at T1 Time T2 Change Method 
Change Method 

Acronym 

1 Pre-existing  

Land Cover/Land Use 

Map 

used to extract the 

tropical evergreen 

forest target class 

 of interest: 1998 

Worldview-2 

image: 

14 March 2013 

Cross Correlation  

Analysis 

CCA_VHR  

2 
Sentinel-2:  

19 February 2016 
CCA_HR_Sentinel-2 

3 

Landsat 8 OLI 

image: 

20 March 2016 

CCA_HR_Landsat 

4 
Landsat 5 TM image: 

16 March 1997 

Landsat 8 OLI 

image: 

20 March 2016 

NDVI direct comparison 

by image differencing  
DIFF_NDVI_HR 
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Techniques 

When using Earth Observation (EO) data and remote sensing techniques to detect LC/LU 

changes in the monitoring process, the selection of automatic change detection techniques can 

be determined, on the one hand, by specific user requirements, on the other, by data 

availability and costs related to both data acquisition (if any) and data processing.  

As reported in the literature (Koeln and Bissonnette, 2000 and Civco et al., 2002), the CCA 

technique can be applied to quantify differences between a specific target class layer (e.g., 

tropical forest) extracted from an existing LC/LU map (T1) and a recent single-date image (T2) 

with T1 <T2. All pixels of the T2 image belonging to the selected thematic layer (target class) in 

the T1 map must be analysed first to determine the expected reference class metrics in T2 (i.e., 

class average spectral response and standard deviation). Then, a statistical measure, named 

Z-statistic, can be used to evaluate the distance between the specific pixel spectral signature 

at T2 and the reference class metrics computed. Large values of Z-statistic measures reveal 

possible occurrence of class changes, whereas small Z-statistic values represent non 

observable changes. The Z-statistic results evidence the need of a threshold (TH) which can 

help to identify most of the significant changes. Once these changes are found, information 

about class transitions or modification at T2 can be obtained by local in-field campaigns or 

visual inspection of VHR imagery (if available). The equations used by CCA are described in 

(Koeln and Bissonnette, 2000; Tarantino et al., 2016). 

 

Accuracy assessment 

A set of changed and unchanged forest reference polygonal area was selected to validate the 

output map, through visual inspection of the available WV-2 image. Stratified random 

sampling was applied. When the sampling intensities were found to differ for the considered 

classes (i.e. changed and unchanged areas), correct calculation of the overall accuracy (OA) 

would require weighing the within-class accuracies by the proportions of the study area 

characterising the map classes, otherwise, the OA cannot be calculated as the sum of diagonal 

counts divided by the total count, as generally done in the case of simple random sampling or 

systematic sampling design (Congalton & Kass, 2009). To overcome this problem, for each 

experiment, the change error matrix was produced in terms of sample counts. For a more 

accurate quantification of change overall accuracy, both the protocol described in Olofsson et 

al. (2013; 2014) and the recommendations reported in Section 4.4 of this text were adopted. 

The aforementioned protocol is based on a more informative presentation of the change error 

matrix, thus it offers the advantage that change accuracy and area estimates can be computed 

directly from it.  

In accuracy assessment, when map categories are reported as rows (i) and the reference 

categories are the columns (j), Atot represents the total area of the map (window), Am,i is the 

mapped area (ha) of category i in the map and Wi =
Am,i

Atot
 is the proportion of the mapped area 

as category i, p̂ij is then: 

p̂ij = Wi

nij

ni∙

                 (2) 

The unbiased stratified estimator of the area of category j can be obtained as: 

 

Aj = Atot × p̂∙j = Atot ∑ Wi

nij

ni∙i
                  (3) 

where Âj can be viewed as an “error-adjusted” estimator of the area because it includes the 

area of map error omission of category j and leaves out the area of map error commission. 

The estimated standard error of the estimated proportion of area is: 

 

S(p̂∙j) = √∑ Wi
2

nij

ni∙
(1 −

nij

ni∙
)

ni∙ − 1

q

i=1

                    (4) 

The standard error of the stratified area estimate can then be expressed as: 

S(Âj) = Atot × S(p̂∙j)                   (5) 

and the approximate 95% confidence interval for Âj is: 

Âj ± 2 × S(Âj)                    (6) 
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4.3.4.3 Results and discussion 

The quantitative results of the experiments carried out are summarized in Table 4.3.3.3. 

Figure 4.3.3.3. shows the changes detected by using the CCA technique. Specifically, 

CCA_VHR experiment results carried out by using WV-2 image, Sentinel-2 and Landsat OLI 

images as T2 date are shown in Figure 4.3.3.3.f, Figure 4.3.3.3.g, Figure 4.3.3.3.h. whereas 

the result obtained through the DIFF_NDVI_HR the experiments are shown in Figure 4.3.3.3.i. 

Some close-up of the changed areas encircled in red and yellow in Figure 4.3.3.3 (f to i) are 

reported in Figure 4.3.3.4. and Figure 4.3.3.5., respectively. 

With the threshold set as µ+1σ, the CCA technique at VHR provided both the largest OA 

(82,4%) and the smallest error in the stratified change area estimate (±2.55ha). The OA 

obtained is similar to the one obtained by CCA at HR (82,29%), with a Landsat OLI image, and 

the error in the stratified changed area was smaller (±2.55ha) than the one from Landsat OLI 

(±32.01ha). These findings are in line with those obtained in a previous paper by Tarantino et 

al. (2016) for grasslands ecosystems. Moreover, the results obtained with the Sentinel-2 

image were lower in terms of overall accuracy (72.70%).  

In consideration of the different techniques used, the direct comparison of NDVI image pairs 

provided the smallest OA (63.33%) with the largest stratified changed area estimate. This 

estimation takes into account omission errors due to the technique applied. As can be 

observed in the close-up areas from DIFF_NDVI_HR reported in Figures 4.3.3.4.i and 4.3.3.5.i, 

several changes appear not to be detected at all.  

With regards to the scale of analysis, the close-up windows in Figure 4.3.3.4 can reveal how 

difficult it may be to detect changes in the density of the tropical forest cover at HR. As shown 

in Figure 4.3.3.4.f and 4.3.3.5.f, changes in forest density could be clearly detected at VHR by 

CCA. Forest fragmentation detected in 2013 by VHR can still be observed not only in the CCA 

images from both Sentinel-2 and Landsat OLI images dated 2016, but also in the 

DIFF_NDVI_HR output image, although the latter image seems not detect all forest coverage 

changes (Figure 4.3.3.5.i). 
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Table 4.3.3.3. Change detection matrix. Results from CCA at (VHR and HR) and DIFF_NDVI_HR. Producer's and overall accuracies are 

based on stratified estimation. TH refers to the threshold applied to the Z-statistic image in the CCA experiments. Am is the mapped change 

area. 

Change: transition from Evergreen Forest to Other – at different TH for an area of 911 ha (at T1) 

Exp. 
Change Method 

Acronym 
TH 

Change 

User’s 

Acc.% 

Change 

Producer

’s 

Acc.% 

No 

Change 

User’s 

Acc.% 

No 

Change 

Producer

’s 

Acc.% 

Overall 

Acc.% 

Am (ha) 

change 

 

Stratified changed 

area estimate with 

95% conf. interv. 

(ha) 

1 CCA_VHR 

CCAµ+1σ 
69.96±0.

26 

43.96±0.

19 
84.56±0.16 

94.20±0.

14 

82.40±0.

14 
134.53 214.10±2.55 

CCA>µ+2σ 85.35±0.

33 

10.95±0.

13 
72.60±0.17 

99.21±0.

04 

73.09±0.

16 
34.60 

296.76±2.93 

CCA>µ+3σ 95.93±0.

30 

2.54±0.0

5 

67.80±0.17 99.95±0.

01 

68.04±0.

17  
7.90 

298.53±3.01 

2 
CCA_HR_ 

Sentinel-2 

CCA>µ+1

σ 

80.00±2.

91 

22.56±1.

36 
71.95±1.50 

97.24±0.

54 

72.70±1.

38 
86.68 307.36±25.89 

CCA>µ+2σ 89.02±3.

47 

7.08±0.7

3 
67.13±1.48 

99.54±0.

19 

67.73±1.

44 
25.60 

321.81±26.96 

CCA>µ+3σ 100.0±0.

01 

3.32±0.1

6 
65.00±1.47 

100.0±0.

01 

65.41±1.

45 
11.12 

334.62±27.13 

3 
CCA_HR_ 

Landsat 

CCA>µ+1

σ 

92.03±2.

31 

34.62±1.

78 
81.24±1.84 

98.95±0.

67 

82.29±1.

67 
93.24 

247.86±32.01 

CCA>µ+2σ 98.70±1.

30 

11.59±0.

76 
73.54±1.95 

99.94±0.

16 

74.40±1.

88 
32. 49 

276.65±36.02 

CCA>µ+3σ 100.0±0.

01 

4.66±0.2

9 
68.91±1.98 

100.0±0.

01 

69.37±1.

95 
14.31 

307.36±37.24 

4 DIFF_NDVI_HR DIFF>0 
44.29±5.

98 

9.68±1.8

8 
65.26±2.09 
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Figure 4.3.3.4. Close-up of the changes in the red circle of Figure2 for CCA and DIFF_NDVI 

experiments. 

 



 

 

4.3.4.4 Conclusions 

The findings reported in the present study underline the need of VHR data for detailed 

monitoring in support to conservation studies. Even though the DIFF_NDVI_HR technique 

can reveal changes in the forest ecosystem, the CCA technique can provide more significant 

results. The application of this technique can reduce costs of fine scale change detection 

when: a) the acquisition of several (multi-seasonal) VHR images at time T2 (e.g., within 

year), required to produce high quality LC/LU maps to be compared, is too expensive, and 

b) no archival VHR data are available at T1 for direct image comparison with a new image 

tasked at T2 with T1 < T2. Therefore, the comparison of the results, discussed, invites the 

conclusion that VHR data are needed in investigating tropical forest changes. As well known 

the present policies concerning VHR data require cost reduction in the monitoring and 

regular acquisition of data for endangered areas in support of conservation commitments of 

their management authorities. 
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4.4 ACCURACY ASSESSMENT AND AREA ESTIMATION  

Pontus Olofsson, Boston University, MA, USA 

 

4.4.1 Rationale 

The strength of remote sensing data is the provision of wall-to-wall coverage of the area 

of interest. Classification of the remote sensing data will yield a wall-to-wall map of the 

area that provides a spatially explicit representation of mapped features, such as land 

cover categories. The drawback with this approach is that classification errors are 

inevitable. Classification errors result in pixels (or whatever image objects that are 

analyzed) in the remote sensing data being assigned to incorrect map classes. This 

entails, in addition to an incorrect spatial representation, that the areas of the mapped 

classes are incorrect unless the errors of omission and commission cancel each other out 

which is unlikely. Omission errors of a map class A are pixels that were misclassified as 

belonging to something else than A; the analyst omitted or missed this instance of A 

(hence, an errors of omission). A commission error on the other hand of class A are 

pixels that were misclassified as belonging to A. The extent of these errors is estimated 

by implementation of an accuracy assessment. Central to the accuracy assessment is the 

use of a probability sample of reference observations that are of greater quality than the 

classification. Errors are identified by comparing the sample of reference observations to 

the classification. Using this information, it is possible to estimate measures of accuracy 

that provide information about the magnitude of the overall map error, and errors of 

omission and commission of individual map features. While accuracy measures provide 

important information on how to use and interpret the map, they do not provide an 

adjustment or correction for estimated bias in the areas of map classes. This requires 

construction of an unbiased area estimator that excludes the area committed and 

includes the area that was omitted in the classification. The information required to 

construct an area estimator is typically contained in the error matrix.  

 

4.4.2 Designing the accuracy assessment 

An important part of the assessment is the design of the sample of reference 

observations. If a reference sample does not exist for the study area, it needs to be 

created. In a design-based inference framework, the map units – for example, the pixels 

in the map – form the population from which the sample is selected. A critical 

recommendation is that the sampling design should be probability-based, which requires 

that randomization is incorporated in the sample selection protocol. Probability-based 

sampling is defined in terms of inclusion probabilities, where an inclusion probability 

relates the probability of a map unit being included in the sample (Stehman 2000). The 

inclusion probability must be known for each unit selected in the sample and must be 

greater than zero for all units in the population (Stehman 2001). There are several 

probability sampling designs are applicable to accuracy assessment, with the most 

commonly used designs being simple random, stratified random, and systematic 

(Stehman 2009; Stehman & Foody 2009). An important decision is whether to use 

strata, which are discrete and mutually exclusive subsets of the study area. Stratified 

sampling where the study area is partitioned into strata allows for analysis of subsets of 

the study area that are of interest for reporting results (e.g., reporting accuracy and area 

by land-cover class or geographic subregion), and it typically improves the precision of 

estimates. Another important advantage is the ability to increase the sample size for 

smaller but important subregions that risk insufficient sampling if implementing a simple 

random or simple systematic design (a common example of such regions are areas of 

deforestation or other land change processes which tend to be small compared to the 

total study area). For these reasons, stratified random sampling is a practical design that 



 

 

satisfies most accuracy assessment objectives and most of the desirable design criteria 

(Olofsson et al. 2014). Further recommendations for determining total sample size and 

within-strata sample sizes are provided in Olofsson et al. (2014). A more detailed 

discussion of sample designs are provided in Stehman (2009). 

 

4.4.3 Interpreting the sample 

After a sample has been designed, reference observations need to be collected for each 

unit in the sample. Depending on the nature of the map, several sources of reference 

data are possible: satellite data, field plots, forest inventory data, crowdsourced data, 

etc. For a more exhaustive discussion on reference data sources and reference labeling 

protocol, see Olofsson et al. (2014, p. 47-51). 

 

4.4.4 Analysis of accuracy and area 

After reference data have been collected for each sample unit, an error matrix can be 

constructed by cross-tabulating the map and reference classes. The error matrix typically 

represents map labels in rows and reference labels as columns, with the matrix elements 

pij expressing the proportion of area for the population that has map class i and reference 

class j (Table 4.4.4.1). For Class 1, p12 + p13 is the error of commission while p21+p31 is 

the error of omission. 

Table 4.4.4.1. Example error matrix with tree classes. 

  Reference 

  Class 1 Class 2 Class 3 Total 

Map 

Class 1 p11 p12 p13 p1+ 

Class 2 p21 p22 p23 p2+ 

Class 3 p31 p32 p33 p3+ 

Total p+1 p+2 p+3 1 

 

Unbiased area estimators can be created using the information in the error matrix. When 

the map classes are discrete, as is the case in Table 4.4.4.1, stratified estimation 

typically produces more precise estimates whereas the model-assisted regression 

estimator produces more precise estimates in the case of a continuous predictions 

(Stehman 2013). Stratified estimation – called post-stratified in the case of simple 

random or systematic sampling – is described by Cochran (1977) with further 

explanation in a remote sensing context provided by Olofsson et al. (2013). The model-

assisted regression estimator is described in Särndal et al. (1992), with examples of its 

usage provided by (McRoberts 2011; McRoberts & Walters 2012). These references also 

contain the variance expressions required to construct confidence intervals around the 

area estimates. A confidence interval expresses the uncertainty of an estimate: an 

interval at a 95% confidence level implies that 95% of such intervals, one for each set of 

sample data, include the true value of the parameter. Hence, a smaller confidence 

interval of an estimate implies a higher precision. In addition to area estimates, it is 

recommended that three measures of accuracy are reported: overall, user’s and 

producer’s accuracy. Overall accuracy is the proportion of the area mapped correctly, 

whereas the user’s and producer’s accuracy are the complements of the probability of 

commission and omission errors of a specific map category, respectively. The estimators 

for calculating the accuracies must be consistent with the sampling design. Formulas for 



 

 

estimating accuracy with confidence intervals are provided by Olofsson et al. (2014) and 

Stehman & Foody (2009).  

 

4.4.5 Guidance and implementation 

More specific guidance on decisions pertaining to sampling design, estimators and the 

use of existing reference and map data is provided in the Methods & Guidance Document 

(MGD) of the Global Forest Observations Initiative (GFOI). The first version of the 

document (Penman et al. 2014, Section 3.7) contains two common examples. The 

upcoming second version to be released in spring 2016 will contain decision trees and 

additional guidance. Open-source software tools and hands on instructions for 

implementation are provided by the BEEODA suite (Boston Education in Earth 

Observation Analysis) which is free for download at http://beeoda.org and 

https://github.com/beeoda. The BEEODA material supports implementation of the good 

practices for accuracy assessment and area estimation outlined in Penman et al. (2014) 

and Olofsson et al. (2014). See section 4.3 for implementation examples within case 

studies. 
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4.5.1 Introduction 

Global biodiversity, and the ecosystem functions it supports, is increasingly threatened 

by anthropogenic impacts, yet how ecological assemblages at different scales are 

responding to these pressures is less clear and even controversial (e.g. Newbold et al 

2015; Vellend et al 2013; Cardinale et al. 2012). Inferring that ecosystem functions will 

decline due to biodiversity loss in the real world remains an untested assumption. Hence, 

several latest studies working with large global database of different nature, have been 

contesting that such loss is actually occurring in particular at local scales in nature (see 

Vellend et al 2013, Dornelas et al 2014; Elahi et al. 2015; Newbold et al 2015). 

Nevertheless, it is well known that different human pressures are traduced into land-use 

change that is recognized as the main driver of biodiversity degradation at global scale. 

Plant communities in particular can undergo declines (homogenization) or increases 

(differentiation) in β-diversity depending on the landscape configuration and on the 

spatial scale of analysis (e.g. Arroyo-Rodríguez et al 2009; 2013). 

There are still substantial knowledge gaps in relation to conservation and sustainable use 

of biodiversity. These include gaps related to the state of biodiversity, drivers of loss and 

pressures on biodiversity, their impact now and in the future, and the effectiveness of 

policy responses. In many cases, the effect of habitat loss and fragmentation on species 

has been shown to be non-linear, reflecting a threshold value beyond which its negative 

impacts increase significantly (Swift & Hannon 2010).  

 

Causes of recent changes in tropical forest dynamics remain unclear and the responses of 

tropical trees to environmental changes are still poorly understood. New research 

strategies with a new vision are needed, focusing on landscapes instead of single trees, 

on long term instead of short term changes in order to improve predictions of forests 

responses to global change. User surveys have identified the need for guidance 

documents and detailed information related to advanced monitoring systems including 

remote sensing (RS) data and methods for biodiversity monitoring in tropical forests, 

including good practices, in link with policy targets. 

Analysing a large vegetation data base from a hierarchically nested sampling design in a 

rain forest in Mexico, Arroyo-Rodríguez et al. (2013) found that patterns of floristic 

homogenization and differentiation depend on the landscape configuration and on the 

spatial scale of analysis. Hence, a multi-scale approach, including space and time, seems 

to be needed to accurately assess the impact of land-use change on β-diversity and to 

have a better understanding of the mechanisms that contribute to the maintenance of 

species diversity in particular in fragmented landscapes (Harrison & Cornell 2008; Lôbo 

et al 2011). 

In the past 100 years, the global forest coverage has decreased by 50%, an estimated 

loss of the size of the UK per year (FRA 2015). Here, the tropical forest ecosystems are 

under particular increasing threats due to excessive human development including 

mining, deforestation, conversion to agriculture, fires, and with 1.6 billion people (~ 25 

% of the world population) directly depending on forests for their livelihood & subsistence 

(State of the World’s Forests 2014). The vast majority of these activities are driven by 

economic interests only, are not sustainable, and have a significant impact on the 

environmental and social services provided by tropical forests. The ever-growing demand 

for new land and resources imposes a large risk in particular to tropical forests, known as 

a highly vulnerable ecosystem. For example, the Amazon rainforest is the largest 

remaining tropical forest on our planet, which is home to 1/3 of the world's species, 1/4 

of the world's freshwater, 1/5 of the world's forests, 48 billion tons of carbon dioxide in 

http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12153/full#jec12153-bib-0022
http://www.fao.org/3/a-i4808e.pdf
http://www.fao.org/3/a-i3710e.pdf


 

 

its trees, and 200 indigenous and traditional communities (The Nature Conservancy; 

Forest Peoples Program, 2012 (based on various sources). An overview on the global 

state of forests is summarized in the UNEP report on vital forests 

(http://www.unep.org/vitalforest/). The Forest futures survey report shows that 

developments in the agricultural sector have larger impacts on forest loss than reducing 

pressure from wood extraction on forest through an increased supply from planted 

forests. This report estimates cropland expansion as the main cause of forest loss and 

fragmentation at present and towards the horizon 2050, in particular for South America 

followed by Africa and Asia. To revert this situation policies with a strong implementation 

are needed to control and halt monocultures, in particular to preserve resilient tropical 

forests and its livelihood they maintain.  

 

4.5.2 Forest fragmentation 

Fragmentation is simply the disruption of continuity (Lord & Norton 1990). When defined 

in this manner, the concept of fragmentation can be applied to any domain in which 

continuity is important to the functioning of ecosystems. In a restricted way, 

fragmentation occurs when a large expanse of habitat is transformed into a number of 

smaller patches of smaller total area, isolated from each other by a matrix of habitats 

unlike the original (Wilcove et al., 1986). The fragmentation of natural habitats is usually 

a result of the expansion of land use that accompanies human population growth. As 

fragmentation proceeds, average fragment size and total fragment area decreases and 

insularity of fragments increases (Moore 1962; Burgess & Sharpe 1981).  

Habitat fragmentation and forest loss have been recognized as a major threat to 

ecosystems worldwide (Pacha et al 2007; Armenteras et al. 2003; Noss, 2001; Dale and 

Pearson, 1997; Iida & Nakashizuka, 1995). These two processes may have negative 

effects on biodiversity, by increasing isolation of habitats (Debinski & Holt, 2000), 

endangering species, and modifying species’ population dynamics (Makari et al., 2002; 

Romero-Calcerrada & Luque 2006). Fragmentation may also have negative effects on 

species richness by reducing the probability of successful dispersal and establishment 

(Gigord et al., 1999; Luque et al., 1994; Luque 2000) as well as by reducing the capacity 

of a habitat patch to sustain a resident population (Iida & Nakashizuka, 1995). For 

example, fragmentation of the Maulino temperate forest in central Chile has affected the 

abundance of bird richness (Vergara & Simonetti, 2004) and regeneration of shade-

tolerant species (Bustamante and Castor, 1998), while it also favoured the invasion of 

alien species (Bustamante et al., 2003). The ecological consequences of fragmentation 

can differ depending on the pattern or spatial configuration imposed on a landscape and 

how this varies both, temporally and spatially (e.g. Armenteras et al., 2003). Some 

studies have shown that the spatial configuration of the landscape and community 

structure may significantly affect species richness at different scales. Other authors 

emphasise the need to incorporate the spatial configuration and connectivity attributes at 

a landscape level in order to protect the ecological integrity of species assemblages 

(Herrmann et al., 2005; Piessens et al., 2005).  

The dynamics of populations inhabiting terrestrial habitat fragments have received 

considerable research attention, including studies of birds, mammals, invertebrates, and 

plants (Herkert 1994; Johnston & Hagan 1992; Romero-Calcerrada & Luque 2006). 

Although there is general agreement on the fragmentation effects on breeding birds 

within forest habitats, the mechanisms that account for these trends are not clear (Lynch 

1987, Martin 1988). There is a need for studies that provide a quantitative treatment of 

landscape pattern changes and dynamics to better understand the widespread population 

decline of several species in fragmented landscapes. We need to be able to compare 

different study sites and species information to better understand fragmentation and its 

impact as well as to target the many unresolved questions that exist within the subject, 

as has been pointed out by several authors (e.g. Fahrig 2003, Bissonette
 

& Storch
 

2002). 

See also chapters 4.2.2, 4.6.2, and 5.2.4 for more information on species mapping. 

http://www.nature.org/
http://www.unep.org/vitalforest/)


 

 

 

4.5.3 Forest fragmentation in the tropics 

An impressive amount of biodiversity has evolved within the dense and diversely forested 

landscape of tropical forests (see Section 2.5). For this reason, forest fragmentation is 

the primary driver of species loss in tropical forest. There are several mechanisms 

whereby forest fragmentation impacts species, including the direct effects of human 

disturbance during and following timber harvesting activities, reduction of species 

population size due to decreased habitat area, reduced immigration combined with 

introduction of exotic species, forest edge effects, and changes in community structure 

(Turner 1996). Many tropical forest species are intolerant to conditions outside their 

native habitat, making them especially susceptible to habitat fragmentation. Finally, 

fragmentation will reduce the connectivity between forest habitats and hence restrict the 

ability to navigate the landscape and to locate and settle in new forest habitats. 

 

The different types of human activities act at different scales, from local (logging, slash 

and burn), to regional (oil palm plantations, soy and other industrial monocultures, fires, 

timber production), up to large scale landscape changes (mining, deforestation). 

Depending on their type, these activities may have different impacts on the previously 

intact forest cover, resulting in introducing perforations, degradation, segregation, up to 

complete removal of the forest cover. In the literature, the conversion of intact forest 

cover is often described with the terms degradation (Shimabukuro et al., 2014, Souza et 

al., 2015) and fragmentation.  

In general, degradation is associated with a loss in biodiversity or species richness within 

existing forest coverage, for example as a result of a temporary forest loss. From a 

remote sensing point of view, the assessment of degradation requires the analysis of a 

long-term time series of comparable forest maps.  

Fragmentation, in contrast, is a rather complex mix of several, different landscape 

aspects, addressing the number and typical shape, the inter-patch distance, pattern, 

connectivity, and patch configuration. In addition, fragmentation is typically perceived as 

a species-specific measure having a multitude of qualitative definitions (Bogaert et al., 

2011; Rutledge, 2003; Forman, 1995), mostly describing the possibility of species 

movement. By definition, such concepts require a-priori knowledge of a given species 

and for the same landscape will result in high or low fragmentation, depending on the 

species under study. Other, geometric based concepts, try to measure and then combine 

the different spatial aspects or use very simple assessment schemes such as deviation 

from intact forest (Bucki et al, 2012), or focussing on a single aspect only, i.e., division 

by road networks (Jaeger, 2000). Generic, robust concepts were suggested by Riitters et 

al. (2000, 2002, 2012) and extended to normalised spatial indicators by Vogt (2015) 

using geometric assessment schemes based o complexity, entropy, and contagion. The 

advantage of those holistic models is the objective and simultaneous evaluation of the 

various spatial aspects associated with fragmentation, such as shape, amount, inter-

patch distance, perforation, and configuration. By design, they allow for the detection of 

spatial hotspots, the quantitative assessment of changes in fragmentation over time, as 

well as the direct comparison of the degree of forest fragmentation when comparing 

different forest maps. For example, in GuidosToolbox (Vogt, 2017) the Contagion index is 

focussing on the foreground class (i.e. forest) only and for this reason will result in high 

values in areas of isolated trees or small forest remnants. The Entropy index has a 

different approach, addressing the duality in a binary forest mask: forest is fragmented 

by non-forest and vice versa. With this definition, fragmentation of a forest mask is 

complimentary to the one of the corresponding non-forest mask: low fragmentation 

values are found for isolated trees equally to core forest areas having isolated 

perforations; and highest values are found in areas of an equal intermix of small forest 

and non-forest areas.  

These features are of prominent importance to assess and understand the resilience in 

complex ecosystems as in the case of tropical forests. Biodiversity monitoring via remote 

sensing is limited to the monitoring and assessment of the arrangement of forest 



 

 

patches. While it is not feasible to monitor individual species, the structure and spatial 

configuration of their habitats can be assessed and quantified by generic, scale 

independent forest fragmentation schemes. A generic framework of robust and consistent 

methodologies is the onset for a reliable long-term monitoring scheme. The provision of 

such a system can be applied from local to continental level and will facilitate a common 

assessment base for countries using different data sources, reference years, thematic 

projects, or political directives. 

 

Connectivity refers to the degree to which a landscape facilitates of impedes the 

movement of organisms between habitat patches, and is typically measured with 

reference to a particular species or group of species (Tischendorf & Fahrig 2000). For 

example, a small bird and a jaguar will have a different perception of connectivity on the 

same landscape. This owes to the spatial scale at which a species perceives its 

environment (at both, fine-scales – grain, and coarse-scales – extent), and its movement 

capabilities (Wiens et al. 1997). As previously mentioned, species inhabiting tropical 

forests are especially sensitive to fragmentation. Consequently, maintaining habitat 

connectivity involves conserving landscapes with vast and continuous tracts of mature 

tropical forest for many tropical species. In other environments, species have evolved to 

habituate much more fragmented landscapes, where primary habitat patches are 

interspersed within a matrix of non-habitat (Turner, Gardner, O’Neill 2001).  

Methods for studying habitat fragmentation and connectivity have evolved over the last 

years, primarily in the field of landscape ecology (Turner 1989). Geographic Information 

Systems (GIS) combined with airborne and satellite remote sensing have been integral to 

these developments. Through remote sensing researchers can map landscape features 

(e.g., land use and land cover) with increasing detail. GIS has provided researchers with 

the tools needed to manage, process, and analyse fragmentation and connectivity.  

In recent years, tools for quantifying and analysing habitat fragmentation and 

connectivity have become readily available to researchers through several initiatives. 

Many of these tools represent stand-alone software packages that incorporate 

functionality that can be applied to most popular GIS data structures. Here we highlight 

examples that are specially designed for studying habitat fragmentation and connectivity 

based in public available freeware.  

 

4.5.4 Toolboxes 

The monitoring and evaluation of landscape structure is often linked to describe the 

underlying processes in biodiversity. A typical strategy in Landscape Ecology has been 

the development and usage of landscape metrics. A comprehensive overview of metrics 

and their suitability to monitor biodiversity, address questions of nature protection, 

conservation and habitat modelling can be found in Waltz, 2011. While aggregated 

metrics may be sufficient for some thematic studies they have intrinsic limitations due to 

their nature as a single value indicator for an entire region. For example, an indicator 

such as average patch size may not represent an actually existing typical patch size nor 

will it be able to capture the spatial distribution of patch sizes or locate hotspots of highly 

fragmented areas. In a similar way, an index total forest area may be constant over time 

due to averaging out different geographic areas showing forest loss and forest gains. To 

overcome the indicator-intrinsic limitations more recent studies focus on spatial map 

analysis, a pre-requisite for the adequate assessment of pattern, fragmentation, 

connectivity, locating spatial changes and as such forming the base for landscape 

planning, conservation, and restoration policies. 

The following provides a selection of tools targeted towards a better characterisation and 

understanding of fragmentation. These tools provide a graphical interface designed to 

facilitate the investigation and analysis of spatial data, extracting fragmentation relevant 

information in a user-friendly way, and providing solutions for landscape monitoring and 

planning. 

 

 



 

 

IMPACT Toolbox:  

A portable, browser-based, free and open-source application for typical processing tasks 

in image processing, visualization and mapping. This software links research projects on 

monitoring forests in the tropical belt (TREES; FOROBS; ReCaREDD) with national forest 

services. It combines a variety of tools, including data extraction, layerstacking, 

radiometric calibration, normalization, mosaicking, automatic classification, 

segmentation, visual editing and map validation. The full processing chain from raw 

satellite imagery to the final product, a pixel-based classification land cover map, 

supports Landsat (30m) and RapidEye (5m) data, while support for additional satellite 

data sets (Sentinel2) is ongoing. Individual generic components such as segmentation 

and map editing may use any other satellite data like Skybox (2m), Spot5take5 (10m), 

or Sentinel (10m). The Toolbox is under constant development, a feature summary is 

provided in a flyer, and the latest version and further information on the software is 

available on the IMPACT Toolbox homepage. 

 

 
Figure 4.6.1. IMPACT Toolbox: Portable GIS toolbox for image processing and land 

cover mapping.  

 

 

GuidosToolbox: 

A free software collection of generic raster image processing routines aimed at the 

detection, description and measurement of essential image object attributes such as 

pattern, connectivity, fragmentation, distance, change and cost analysis. All 

methodologies are based on geometric concepts only and thus applicable to any kind of 

digital raster data and at any scale. Typical application fields include studies on 

deforestation, fragmentation, degradation, carbon stocks, natural hazards (fires/pests), 

landscape and restoration planning, and sustainable management of forests. The input 

data can be land cover or binary forest maps, which, after processing, can be saved as 

Geotiff for post-processing in any GIS environment or for web-publishing as GoogleEarth 

image overlays.  

A key component of GuidosToolbox is MSPA (Morphological Spatial Pattern Analysis, 

Soille & Vogt, 2008) resulting in mutually exclusive geometric feature classes, including 

the automatic detection of connecting pathways. Over time, a wide variety of additional 

http://forobs.jrc.ec.europa.eu/
http://www.fao.org/partnerships/redd-plus-partnership/42116-0955cfa52bd0fc117468fd65caf61732c.pdf
http://forobs.jrc.ec.europa.eu/products/software/impact/IMPACToolbox_leaflet_V2.pdfhttp:/forobs.jrc.ec.europa.eu/products/software/impact/IMPACToolbox_leaflet_V2.pdfhttp:/forobs.jrc.ec.europa.eu/products/software/impact/IMPACToolbox_leaflet_V2.p
http://forobs.jrc.ec.europa.eu/products/software/
http://forobs.jrc.ec.europa.eu/products/software/
http://forest.jrc.ec.europa.eu/download/data/google-earth-overlays/
http://forest.jrc.ec.europa.eu/download/software/guidos/mspa/


 

 

tools were added to the toolbox to address typical issues in landscape monitoring and 

planning, i.e. generic and normalised measures for maps of forest fragmentation via 

concepts of local contagion or spatial entropy (Vogt, 2015). Temporal changes may be 

assessed via a dedicated morphological change detection algorithm (Seebach et al., 

2013), developed for and used in the FRA2015 assessment. The change detection now 

also includes the index Elasticity (Riitters et al., 2015) to account for the severe damage 

to intact forest areas caused by the loss of interior forest. The latest add-on to the image 

analysis software collection is a morphological cost analysis deriving the least cost path 

as well as a cost map with user-driven cost zones, a product which should be useful to 

analyse as well as simulate the impact of land cover changes, including hazards, on 

species-specific movement patterns and habitat fragmentation and restoration maps 

alike.  

 

 
 

Figure 4.6.2. GuidosToolbox: example showing per-pixel fragmentation values ([0-100] 

%) and further potential processing options available in the Image Analysis menu. 

 

GuidosToolbox is under constant development and available for free for the MacOS, 

Linux, and MS-Windows operating system from the GuidosToolbox homepage. A feature 

summary is provided in the flyer, and the optional workshop material with detailed 

further information can be installed from within the software. 

 

 

Conefor:  

Conefor (Saura & Torne 2009) is a free software package containing a series of functions 

for quantifying important habitat areas and links in the analysis of habitat connectivity. It 

also includes a set of new connectivity indices (integral of index of connectivity and 

http://forest.jrc.ec.europa.eu/download/software/guidos/
http://forest.jrc.ec.europa.eu/download/software/guidos/
http://ies-ows.jrc.ec.europa.eu/gtb/GTB/GTBleaflet.pdf
http://forest.jrc.ec.europa.eu/download/software/guidos/workshops/


 

 

probability of connectivity) which are suitable for many applications (e.g., Pascual-Hortal 

& Saura 2006, Saura & Rubio 2010). Typically, it is thought of as a decision support tool 

where it can be used to prioritize areas (specifically habitat patches, or corridors) which 

are integral to maintaining connectivity at the landscape scale. Conefor builds upon the 

graph-theory approach (Urban & Keitt 2001) for modelling habitat connectivity by 

considering how a series of habitat patches (nodes) are connected by corridors (links). 

Conefor uses resistance surfaces to model the heterogenous environment in order to 

consider non-linear movement paths between patches. Through the use of resistance 

surfaces, barriers and/or highly impassable habitat types can be directly incorporated 

into connectivity models. 

Conefor is available as a standalone graphical user interface (GUI) or command-line 

interface (http://www.conefor.org/), or as a plug-in to the GIS package Quantum GIS 

(www.qgis.org). It operates on the Windows operating system, and is distributed free-of 

charge for non-commercial uses. The GuidosToolbox also provides functionality for 

exporting files suitable for use with Conefor for integrated analysis workflows. 

 

4.5.5 Study Cases – Corridors to improve protection & conservation 

Protected areas have been the 

dominant strategy for tropical forest 

conservation, increasing 

substantially in area in recent 

decades (Jenkins and Joppa 2009). 

While protected areas have generally 

been effective at reducing 

deforestation inside; deforestation 

outside protected area boundaries 

has increased the isolation of forests 

within them. This generalized 

situation is negatively affecting 

related ecological processes and 

biodiversity. Better connected forest 

patches promote species persistence 

by allowing for recolonization after 

local extinctions and connected 

forests help species respond to 

climate shifts by allowing for dispersal as environmental conditions change (Noss 2001). 

 

Recognizing the negative effects of forest fragmentation and loss of connectivity, the 

Convention on Biological Diversity (CBD) Aichi Biodiversity Targets aim to significantly 

reduce forest fragmentation by 2020 and the CBD Programme of Work on Protected 

Areas sets a goal of integrating “protected areas into broader land- and seascapes and 

sectors so as to maintain ecological structure and function” (CBD Programme of Work on 

Protected Areas Goal 1.2). The emergence of REDD+, a mechanism for reducing carbon 

emissions from deforestation, and the development of biodiversity safeguards to ensure 

sustainable REDD+ implementation, suggest an alignment of goals for forest carbon 

protection and protected area connectivity. More recently, the International Union for 

Conservation of Nature (IUCN) and the World Commission on Protected Areas (WCPA) 

drafted guidelines defining Areas of Connectivity Conservation (ACC) as a basis for 

assessing progress toward Target 11 of the Convention on Biological Diversity (Worboys 

et al. 2015). See section 8 for synergies between biodiversity monitoring and REDD+. 

 

To address these types of priorities, Jantz et al. (2014) mapped corridors that traverse 

the highest biomass forests between tropical protected areas. The approach uses 

common GIS algorithms to identify forests where protection could help maintain 

protected area connectivity while preventing CO2 emissions from deforestation (Fig. 

4.6.3). Across a range of biomass densities, there were large numbers of corridors that 

 
Figure 4.6.3. Corridors (white) between 

protected areas in central Africa (Jantz et al. 

2014). Aboveground biomass (Baccini et al. 

2012) is shown in green (high) to red (low) 

gradient in the background. 

http://www.conefor.org/
file:///C:/Users/sandra/Desktop/Sandra-Terra/CONFERENCES/2014/TropBiodiv-BOOK/BOOK/outputs/www.qgis.org


 

 

were at least as dense as the protected areas they connect, suggesting opportunities for 

achieving multiple co-benefits via protection of high biomass forest corridors.  

 

To illustrate a possible approach for 

prioritizing conservation investment 

among corridors, they used 

multicriteria analysis to identify 

corridors in the Brazilian Amazon with 

high biodiversity value (either 

overlapping with rare species ranges 

or a high number of species ranges), 

high deforestation risk, low economic 

opportunity cost and high biomass. As 

a whole our analysis showed 

significant potential across the tropics 

for co-benefits from REDD+ 

investments but with considerable 

geographical variability. For example, 

the southern portion of the Amazon 

had relatively low biodiversity scores 

and high economic opportunity cost 

due to soybean farming, yielding low 

conservation benefit per dollar 

invested in corridor protection relative 

to other regions (Fig. 4.6.4 a and b). 

Maps of priority connectivity areas 

created using consistent, high quality 

satellite imagery and GIS datasets can inform ongoing conservation efforts. For example, 

UN-REDD and GRASP (Great Apes Survival Project) developed a web application that 

allows users to overlay and summarize the corridors described above, protected areas 

and great ape habitat suitability layers, helping decision makers and other stakeholders 

achieve both climate mitigation and great ape habitat connectivity benefits (Fig. 4.6.5). 

http://primatdbext.eva.mpg.de/redd/  

http://www.un-grasp.org/new-web-tool-facilitates-joint-efforts-to-protect-great-apes-

and-fight-climate-change/ 

 

 

 
Figure 4.6.4. Multicriteria scoring of 

corridors with high deforestation risk, high 
biomass and high endemism richness (a) or 

high species richness (b). Deforestation 
risk shown in (c). Panels d-g show detail of 
a and b with spatial maps of deforestation 

risk in the background. 

http://primatdbext.eva.mpg.de/redd/
http://primatdbext.eva.mpg.de/redd/
http://www.un-grasp.org/new-web-tool-facilitates-joint-efforts-to-protect-great-apes-and-fight-climate-change/
http://www.un-grasp.org/new-web-tool-facilitates-joint-efforts-to-protect-great-apes-and-fight-climate-change/
http://www.un-grasp.org/new-web-tool-facilitates-joint-efforts-to-protect-great-apes-and-fight-climate-change/


 

 

 

Figure 4.6.5. Screenshot of the UN-REDD/GRASP web tool showing vegetation carbon 

stock corridors (green polygons) overlaid with mountain gorilla habitat suitability layers 

(red to yellow gradient). 

 

4.5.6 Conclusion 

There is a need to develop management and planning options for a) landscapes that are 

already significantly altered and in need of either improved management or restoration, 

and b) for landscapes, which are still relatively altered, but which are under increasing 

human pressure. The provision of such options depends on an understanding of 

landscapes processes and the ability to use this understanding to develop strategies, 

which are effective in dealing with the biophysical problems while at the same time are 

socially and economically acceptable.  

The ecological consequences of fragmentation can differ depending on the pattern or 

spatial configuration imposed on a landscape and how this varies both, temporally and 

spatially. Some studies have shown that the spatial configuration of the landscape and 

community structure may significantly affect species richness at different scales. Other 

authors emphasise the need to incorporate the spatial configuration and connectivity 

attributes at a landscape level in order to protect the ecological integrity of species 

assemblages. See also chapters 4.2.2, 4.6.2, and 5.2.4 for more information on species 

mapping. 
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4.6.1 Introduction 

Remote sensing has become increasingly important in vegetation mapping. Early 

applications pertained to aerial photography, but more recently satellite imagery with a 

huge range of spatial and temporal resolutions is in use that increases the applicability’s 

from entire ecosystems to specific vegetation types. Some mapping projects apply 

remote sensing to segment the landscape into homogenous polygons to aid field 

surveyors, while others produce maps directly from imagery by combining imagery with 

other spatial data sets. The latter approach is gaining momentum in the light of major 

improvements in the technology. Using a mixture of remote sensing and field methods 

seems to deliver the best results.  

In recent years advances working with different sensors at different resolutions are 

allowing to work not just at finer resolutions but also to work on areas where cloud cover 

was a problem. As an example, remote sensing images with high spatial and temporal 

resolutions are required to precisely identify land use at the field scale in agricultural 

areas covering more than a few hectares. An assessment, produced by Dusseux et al 

(2014), provided important insights on the ability of optical images, SAR (Synthetic 

Aperture Radar) images and the combination of both types of data to discriminate 

between grasslands and crops in agricultural areas where cloud cover is very high most 

of the time, which restricts the use of visible and near-infrared satellite data. They 

compared the performances of variables extracted from four optical and five SAR satellite 

images with high/very high spatial resolutions acquired during the growing season 

providing improved classification accuracy (Dusseux et al 2014). Hence, some critics 

argue that deriving information on biodiversity from space on a global level remains to be 

demonstrated. Because characterizing species traits or ecosystem structure requires data 

on diverse scales (spatial, temporal and spectral), data from multiple missions must be 

combined (Skidmore et al 2014). Nevertheless, satellite remote sensing is crucial to 

getting long-term global coverage. It can rapidly reveal where to reverse the loss of 

biological diversity on a wide range of scales in a consistent, borderless and repeatable 

manner (Turner 2014).  

The present chapter is divided in two sections, first tree species identification and 

mapping is presented, providing some insights on classification methods, general 

principles and recent advances. In the second section the role of remote sensing is 

considered in the light of: i) directly mapping forest species, ii) modelling their 

distribution, iii) accounting for uncertainty in mapping forest species, iv) applying 

continuous methods to solve mapping issues. In all, the chapter discusses open 

challenges and pitfalls regarding remote sensing for forest-related studies. Evidence to 

demonstrate the usefulness of remote sensing in directly mapping and modelling forest 

plant species, and the potential for RS to detect forest patterns is argued.  

 

4.6.2 Direct tree species mapping 

Tree species identification and mapping based on remotely sensed data is particularly 

challenging in tropical forests, due to several properties of these dense closed canopies. 

First of all, neighbouring crowns are not perfectly delineated and their boundaries overlap 

or mix with each other. Second, proper identification of tree species is directly dependent 

on the size of its crown and the pixel size defined by the instrumental characteristics of 



 

 

the sensor used to acquire imagery. Finally and most important, the number of species to 

differentiate is extremely important, making confusion between species’ spectral 

signatures inevitable. This very high biological diversity is tightly linked to leaf chemical 

diversity, which in turn directly influences the spectral diversity (Asner and Martin, 

2009). However, many scaling challenges still exist to link leaf spectral signatures of 

species with their canopy counterpart: the variability of the leaf optical properties and 

the complexity of the canopy structure directly influence the measured signal, leading to 

strong difficulties when attempting to assign spectral or spatial patterns to a particular 

species at the canopy scale (Féret and Asner, 2011). Numerous open challenges remain 

to disentangle the relative contribution of the different chemical, structural and 

experimental factors to the signal acquired by airborne or space borne platforms. These 

questions are currently very actively investigated: researches involving physical 

modelling aim to better understand interaction between light and vegetation and help 

interpret vegetation properties for complex canopies (Morton et al., 2014). 

Complementary to these physically-based approaches, data-driven approaches based on 

statistical and mathematical tools consistently proved their ability for canopy species 

identification. The most successful and widespread approaches developed during the past 

decade are built on supervised classification algorithms applied to imaging spectroscopy 

(Baldeck et al., 2015; Clark et al., 2005; Féret and Asner, 2013). Identifying individual 

species reliably using satellite-based and aerial imagery is challenging due to the 

difficulties of choosing and detecting optimal spectral wavelengths to differentiate the 

target species from others (which may only be possible at certain times of year), and 

controlling for the effects of vegetation structural characteristics (Kempeneers et al., 

2008; Zeng et al., 2009; Chopping, 2011; Pisek et al., 2011). In this section, we will 

propose a brief overview of the strategies that can be depicted from this field of 

research. 

 

4.6.2.1 The “brute force strategy” 

The most common strategy consists in performing one-step multi-class classification, 

based on prior definition of the species of interest. Supervised algorithms for multi-class 

classification problems are basic yet efficient tools for the hyperspectral remote sensing 

community. As for any classification task, the performances of these methods are 

strongly dependent on the data used to train the classifier: they needs to be 

representative enough of the population of each of the species to be discriminated and 

possibly well balanced. The classification model obtained after training can then be 

applied more or less successfully over an extended dataset, such as a full image, if its 

generalization properties are satisfying. The validation of tree species identification 

procedures is usually limited to study sites with moderate taxonomic diversity due to the 

financial and logistic costs associated with airborne and field data collection.  

A large variety of classification algorithms is available in most of the softwares and 

programming languages, and one can cite among others: linear and regularized 

discriminant analysis (LDA, RDA), support vector machines (SVM), random forest (RF). 

The straightforwardness of this strategy is a strong advantage; however the many 

studies applying it highlight its limitations by restricting themselves to a limited number 

of species of interest. A limited pool of species was discriminated either in order to show 

a proof of concept, or because the biological diversity of the sites under investigation was 

reasonably low. The pioneering work of Clark et al. (2005) demonstrated that high 

spectral and spatial resolution imagery acquired over tropical rainforest canopy had 

strong potential for species discrimination: they selected seven tree species from Costa-

Rican forest and performed supervised classification using several methods (LDA, 

spectral angle mapper, and maximum likelihood), several spectral configurations 

(selection of bands and spectral domains) and several data grouping strategies (pixel 

scale, crown scale, and object-based classification). The most successful configurations 



 

 

outreached 85% overall accuracy but the limited sample size would not allow 

generalization for operational mapping of tree species in hyper-diverse ecosystems.  

Following this study, Clark and Roberts (2012) derived a large number of metrics from 

hyperspectral data (including spectral indices derivatives and absorption-based 

techniques, and spectral mixture analysis) and used them to train a RF classifier. They 

concluded in slightly lower performances of RF compared to LDA (Clark et al., 2005), but 

mentioned the possible bias and limitations of the comparison due to the sample size and 

different optimization strategies. The authors used hyperspectral metrics instead of the 

reflectance bands in an effort to interpret the spectral differences between species in 

terms of chemical and structural properties.  

Féret and Asner (2013) compared different classification algorithms for tree species 

discrimination in the Nanawale rainforest (Hawaii, USA). They achieved about 73% 

overall accuracy for the discrimination of the 17 dominant species found in the study site, 

and concluded on the equivalent performances of LDA, RDA and SVM, although SVM 

showed better performances when limited number of training samples was used. This 

classifier was applied to a whole image in order to map species distribution, and 

validation showed good results; however this particular site of the Nanawale forest 

included moderate species diversity and available spectral information also showed 

moderate resolution.  

These studies share a certain number of conclusions, including the added value of 

combining spectral and spatial information through object-oriented approaches, thus 

highlighting the importance of individual tree crown delineation. They also confirmed 

limitations of the brute-force strategy, consisting in using classification algorithms off the 

shelf without further refinement for operational mapping (for ecological conservation or 

industrial perspective) in forests encompassing high taxonomic diversity, as the chances 

of spectral confusion among species increases with the number of species to 

discriminate. Another strong limitation is the poor adaptability of standard classifiers to 

changing conditions, such as changes in illumination resulting from multiple geometries 

of acquisition, and integration of multi-source remotely sensed imagery. Alternative 

strategies have been recently explored in order to answer the needs of operational tree 

species mapping for conservation and management monitoring, and also in order to get 

the most from the increasing diversity of remote sensing data sources. 

 

4.6.2.2 Operational tree species mapping: take home messages 

Advanced classification strategies based on single species identification or 

species grouping 

The exhaustive mapping of forest species in tropical environments may not be relevant 

due to the current limitations explained in the previous section. When facing high 

complexity, it may be wiser to take step backwards and reformulate the problem in order 

to decrease the complexity: ecologists and forests managers may actually be more 

interested in knowing the accurate spatial distribution of a limited number of tree species 

because of their ecological importance as keystone species, dominant species, 

endangered species, or species of commercial interest, rather than an exhaustive map of 

all tree species with high overall error rates. Maximizing the chances of successful 

species identification depends on two components: i) prior knowledge about the time 

period when target species discrimination is optimal, and ii) application of an efficient 

classification algorithm.  

As aforementioned in the previous section, remote sensing is a powerful tool for the 

monitoring of plant species. In return, plant phenological stages such as flowering can 

strongly help to accurately map plant species using remote sensing. Sánchez-Azofeifa et 



 

 

al. (2011) illustrated this potential by mapping flowering Tabebuia guayacan trees at 

Barro Colorado Island (Panama) using Quickbird satellite imagery (spatial resolution: 2.4 

m). Multi-temporal high spatial resolution images may therefore provide valuable 

information for species mapping. However two challenges arise: detection of flowering 

may not be discriminative enough in all situations and for proper detection of all species 

of interest, and multi-seasonal acquisitions cannot be guaranteed in tropical ecosystems 

due to frequent cloud coverage. Imaging spectroscopy allows overcoming these two 

difficulties, as single acquisitions can potentially be used to accurately identify non-

flowering tree species (Baldeck et al., 2015; Féret and Asner, 2012). Baldeck et al. 

(2015) developed a method for operational tree species mapping in a diverse tropical 

forest based on airborne imaging spectroscopy, and were able to accurately map three 

non-flowering focal species using binary SVM and biased SVM. Working on a selection of 

focal species allows increase in classification model performance and dramatically 

decreases the amount of data required to train the classifier. They also obtained effective 

multi-species classification models by combining single species classification models. 

Another possible option when it comes to simplifying over-complex classification 

problems is to group species by guilds or functional types (Vaglio Laurin et al., 2016). 

Multimodal acquisitions and domain adaptation 

All the studies cited earlier share the same weakness: the classification models are image 

specific and usually show poor performances when applied to other images acquired with 

the same sensor due to changes in illumination and geometry of acquisition. This being 

said, it is also impossible to directly apply such classification models to other data 

sources. This is a strong limitation, in light of the financial and logistical constraints 

associated with airborne imaging spectroscopy, and the increasing availability of satellite 

imagery compatible with tree species identification. New methodological innovations such 

as multimodal data processing are currently developed, in order to deal with the 

increasing volume, complexity and dimensionality of available remote sensing data. 

Some of these methods allow domain adaptation in order to combine heterogeneous data 

sources (Gomez-Chova et al., 2015; Tuia and Camps-Valls, 2016). 

 

4.6.2.3 Plant phenology  

Phenological studies are critical to understanding how species change and adapt their life 

cycles, especially in view of recent climate warming. In this vein, remote sensing has a 

great potential for directly tracking phenology for plants and indirectly determining 

temporal and spatial changes in habitat suitability for animals. 

Different mapping methods have been developed to understand the nature of the 

structure of vegetation in relation to its spectral behaviour (see Forster et al., 2010; 

Nagai et al., 2010; Eastman et al., 2013). While the concept of a spectral library has 

been proven for spectrally homogeneous and stable features (e.g., geological formations 

at coarse spatial scale), the spectral response of plant species varies with phenology, 

stress, and environmental conditions (Kumar et al., 2001). This variation impairs the 

transferability of relations between vegetation and spectra and hence affects the use of 

spectral libraries (Feilhauer and Schmidtlein, 2011; Eastman et al., 2013). However, if 

the complete vegetation cycle can be included with measurements of field spectra, a 

relation between remote sensing imagery and a spectral library is possible for a given 

date of acquisition (Forster et al., 2010).  

On the other hand, relying on time series data, phenological changes allow ecologists to 

gain better understanding of species life cycle events and seasonal dynamics of 

populations and assemblages of species. This is particularly true considering the 

development of dedicated programmes like the Copernicus Sentinel program (European 

Space Agency) or the well-known Landsat NASA programme. 



 

 

Phenology also plays a significant role in detecting and mapping the spatial distribution of 

species in remote sensing applications (He et al., 2011). Multidate remotely sensed 

images have become very useful in forest studies. In particular, the unique phenology of 

some species provides a sound basis for spectral differences between targeted species 

and co-occurring native vegetation (Singh and Glenn, 2009).  

Phenology and other environmental attributes derived from remote sensing are crucial 

for both land cover/land use and habitat mapping using categorization schemes such as 

those developed by FAO in the forest land cover classification system (LCCS) (Di Gregorio 

and Jansen 1998) and by Bunce et al. (2011) in the General Habitat Categories (GHCs). 

Both are useful tools for the monitoring of habitat qualitative features from the 

perspective of vegetation dynamics induced by global warming coupled with 

anthropogenic disturbances (Franklin 2010). Habitat mapping thus conducted can be 

used to deduce species locations, assisting in RS-based direct mapping of species.  

In the tropics, time series of space-borne Hyperion data have been used to study the 

dynamic changes and plant species in Hawaiian rainforests (Asner et al., 2006). The 

authors compared the structural, biochemical, and physiological characteristics of 

nitrogen-fixing trees like (Myrica faya) and (Metrosideros polymorpha) in humid montane 

forests. By using nine scenes of Earth Observing-1 Hyperion satellite data spanning a 

period from July 2004 to June 2005, including a transition from drier/warmer to 

wetter/cooler conditions, the authors successfully identified the basic biological 

mechanisms favouring the spread of tree species and provided a better understanding of 

how vegetation-climate interactions affect plant growth.  

In general, most understory species are hard to detect and map by remote sensing since 

they are usually hidden by overstory canopy. As an example, in some cases, a temporal 

window may exist when a clear phenology difference exists between native overstory 

species and understory invaders (Somers and Asner, 2013a). Wilfong et al. (2009) 

effectively detected the distribution of an understory invasive shrub, Amur honeysuckle 

(Lonicera maackii), in the deciduous forests of southwestern Ohio, using phenological 

difference between Amur honeysuckle and co-occurring native tree species in the canopy. 

These authors conclude that the best phenological window for mapping this invasive 

shrub species is in early spring and late fall, when it retains leaf cover in comparison to 

the other native deciduous forest species, which are devoid of leaves.  

An additional example is provided by Evangelista et al. (2009) mapping tamarisk invasion 

in Arkansas River in southwestern Colorado (USA). This study demonstrated the capacity 

of relatively simple yet well-timed multitemporal image analysis, if used during specific 

time frames in which the phenological attributes of a plant species were maximally 

differentiated, to discriminate invading tamarisk formations from other vegetation types. 

From this point of view, the revisiting period of satellite imagery is crucial. As an 

example, the Sentinel-2 system (ESA, Copernicus program) guarantees 5 days revisit 

cloud free data, fully in line with vegetation changes. 

 

4.6.2.4 Modelling the distribution of forest species  

The potential of remote sensing in forest species mapping has a number of different 

facets of interest, from direct species mapping to forest mapping and uncertainty. 

Mapping the distribution of plant species becomes crucial for forest biodiversity 

estimates. Gillespie et al. (2008) report a number of case studies demonstrating the use 

of remote sensing for species mapping. As an example, Saatchi et al. (2008) 

demonstrated that the inclusion of remote sensing data when modelling the distribution 

of Amazonian tree species significantly improved model performance. The same trend is 



 

 

found when modeling the distribution of "hidden" species such as epiphyllous liverworts 

(Jiang et al. 2013; Vihervaara et al. 2015). 

In some cases indicator species are used as a proxy of diversity over an area (Judith et 

al. 2013). This is not only related to rare species but also to common species which may 

be considered as the most important structural part of forest species communities 

(Gaston et al. 2008). Some recent research indicates that different scales of observation 

may be most appropriate for different taxa, depending on their size, mobility, and modes 

of dispersal. For instance, birds, plants and insects are most appropriately detected in 

Mediterranean landscapes using very high resolution remote sensing data at landscape, 

patch and plot levels respectively (Mairota et al. 2015 a). 

Extending on Araujo and Rozenfeld (2014), given two species sp1 and sp2, the 

probability of co-occurrence (spatial overlap) is a function like f (p_{sp1} , p_{sp2}, 

I_{sp1sp2}) where p = probability of occurrence and I = interaction between species. In 

other terms the intersection of the probability of co-occurrence of species sp1 and sp2 is 

not merely related to the set containing all the individuals attaining at both species but to 

emergent properties rising from their interaction I. 

Hence, such concept could be reliably used to detect sp1 relying on its interaction with 

and the spatial distribution of sp2. This phenomenon is also known as cross-taxon 

surrogacy. These concepts can be reliably applied to remote sensing detection as an 

indirect method to estimate the distribution of hidden species based on directly 

detectable species (Rocchini, 2013). 

Furthermore, species distribution models for the occurrence of species of conservation 

concern can be improved by including remotely sensed predictors. For example, 

Parviainen et al. (2013) used unclassified, continuous remote sensing data to improve 

distribution models of 28 red-listed plant species in north-eastern Finland regions, 

including high latitude forests. They demonstrate that the inclusion of remote sensing 

variables in the generalized additive models improved both the explanatory power (on 

average 8.1% improvement) and cross-validation performance (2.5%of the models.) 

Concerning spatial autocorrelation in species distribution models, as stressed by Miller 

(2012), while there are a number of different methods to account for functions and 

predictor interactions (Elith et al., 2006), it is impossible to find a single method which 

performs better than others in all situations. When dealing with spatial autocorrelation in 

species distribution modelling (see Kuhn and Dormann, 2007), distance decay processes 

appear to mainly drive the dispersal of species (Dormann, 2007). Further, since 

environmental variables are responsible for part of the species distribution pattern, the 

use of remotely sensed images as an additional proxy seems promising because of their 

explicit spatial character that may allow identifying spatial autocorrelation of a species 

over space based on its relationship with pixel reflectance (Carter et al., 2009).  

In some cases, building land cover or vegetation maps from remote sensing data may be 

of use for depicting the spatial spread of a given plant species dominating a vegetation 

type (Hernandez-Stefanoni and PonceHernandez, 2004; Lechner et al., 2013). However, 

in most cases, digital vegetation mapping based on crisp classes may be unfeasible. In 

such cases, fuzzy sets provide a better approach to describe the continuous variation of a 

specific species over space (Figure 4.6.2.4) (Amici, 2011). The same applies when 

attempting to judge the accuracy of vegetation maps by common expert based methods. 

In this view, the use of fuzzy procedures for judging vegetation maps may represent a 

valuable tool (Franklin et al., 2001). 

Moreover, the use of fuzzy sets may allow to explicitly depict the uncertainty of a species 

distribution model, relying on the so called maps of ignorance (Boggs, 1949) 

representing the bias or the uncertainty derived from species distribution modelling, 

alongside predictive maps (Rocchini et al., 2011). Uncertainty can derive from a number 



 

 

of input data sources, such as the definition or identification of a certain species, as well 

as location-based errors. In addition, maps derived from the overlap of different thematic 

layers, may lead to uncertainty related to the modelling procedure being adopted (Arbia 

et al., 1999). Hence the spatial distribution of uncertainty should be explicitly shown on 

maps to avoid ignoring overall accuracy or model errors. Quoting Swanson et al. (2013) 

“including such estimates alongside mean projections gives a map of ignorance as called 

for by Rocchini et al. (2011), highlighting areas where knowledge is lacking and could be 

improved with additional sampling effort or the inclusion of additional covariates.” 

 

Figure 4.6.2.4. A statement describing a vague phenomenon must be necessarily 

vague. This has led to the possibility of assuming for each level of the fuzzy membership 

function (x axis) a fuzzy set membership (y axis). As an example both P1 (representing a 

pixel) and P2 show a high membership to a certain class (say classA, _I=0.7). However, 

P2 has also a higher value of second order membership (_II=0.8) to _I=0.7. In other 

words, P2 is more certain to belong to the classA than P1. Figure reproduced from 

Rocchini et al. (2013). 

 

4.6.2.5 Uncertainty in mapping forest species 

The accurate supervised classification of remotely sensed images requires appropriate 

ground reference data which are often derived from field training sites. There are many 

sources of uncertainty in the training stage of a supervised classification, such as class 

definitions, subjectivity of field data collection and the mixed pixel problem. 

Since plant species represent the bulk of habitat structure (Chiarucci, 2007), training 

sites are often derived from plant sampling-based field surveys, for which one of the 

main problems lies in the definition of plant communities, an issue raised as early as 

1926 by Gleason. Moreover, there is an intrinsic difficulty in judging survey completeness 

(Palmer et al., 2002). This is generally true for all observational sciences; geosciences 

are not free from such uncertainty as a result of a partial input (Henley, 2006). 



 

 

There are a number of provoking papers dealing with problems in the discrimination of 

species in the field, including operator bias (Bacaro et al., 2009), taxonomic inflation 

(Knapp et al., 2005) and more generally taxonomic uncertainty (Guilhaumon et al., 

2008; Cayuela et al., 2011). 

Evidence exists about the possibility that abrupt classification of vegetation types, 

especially at the species hierarchical level, can present misleading or even erroneous 

results (Schmidtlein and Sassin, 2004). This is due to the often continuous transition of 

vegetation assemblages due to changes in environmental gradients (e.g. moisture) and 

self-organization in vegetation. Alternative approaches like ordination methods aim to 

extract major floristic gradients describing the variation of the assemblages as metric 

variables, thus retaining the continuous character of the data (Trodd, 1996; Schmidtlein 

and Sassin, 2004). These gradients can be related to any sort of remote sensing data-set 

using regression approaches such as generalized linear models or partial least squares 

regression (Wold et al., 2001; Feilhauer et al., 2011). 

A second major problem in input data sources for forest ecosystem mapping and its 

related uncertainty is the gap perceived between the scale of the field sampling, namely 

its grain (sensu Dungan et al., 2002), and the spatial resolution of the image being used, 

which appears to be a case of incompatible spatial data (sensu Gotway and Young, 

2002). This is because in most cases field-collected data often are not designed for 

integration with remotely sensed data (Reinke et al., 2006). The structure of forest plant 

communities is spatially organized at different spatial scales (e.g. Osborne et al., 2007; 

Bacaro and Ricotta, 2007). When using coarse spatial resolution remotely sensed data, 

mixed pixels will occur, and will generally tend to smooth reflectance variability at a 

detailed scale thus leading to a scale mis-match with field data (Ricotta et al., 1999; 

Song and Woodcock, 2002; Lechner et al., 2009). 

Finer spatial resolution data sets are not free from problems. For example, images such 

as those from IKONOS (1m to 4m spatial resolution) or QuickBird (0.61m to 2.88m 

spatial resolution) may show very high local spectral variability (e.g. due to shadows or 

tree cover gaps). This may lead to higher intra-class variation and noise rather than 

useful information, with an increase in the variability of signatures of pixels that cover 

the same individual plants/communities (Nagendra and Rocchini, 2008). Hence, there is 

the need to consider to what extent the training pixels represent their respective classes 

(Pal and Mather, 2004). 

In this view, the use of hyperspectral, instead of hyperspatial, remote sensing data (e.g. 

HyMap, spatial resolution 5m, 128 bands, spectral resolution 440–2500 nm for local 

scales studies) has proven useful in better discriminating spectral signatures of different 

habitats, with the possibility of detecting single species across a range of ecosystem 

types (e.g. Oldeland et al., 2010, using Hymap). This is considerably important for a 

number of tasks like species invasion forecasting (He et al., 2011), biodiversity 

assessment (Oldeland et al., 2010), and single tree species mapping of tropical rain 

forests (Clark et al., 2005). Hyperspectral imagery is often coupled with field 

spectrometry to produce a structured number of training areas with known statistical 

properties in the spectral space. These spectral libraries are subsequently used to classify 

unknown field or pixel spectra relying on e.g. nearest-neighbour approaches (van der 

Meer, 2006). This is of particular interest considering the extensive investigation of the 

spectral signal by radiative transfer (Verhoef, 1984) and geometric optical models (Li and 

Strahler, 1986) and their combination for application in the estimation of vegetation 

properties. Different models have been developed to understand the nature of the 

geometry of vegetation in relation to the spectral behavior (among the others Schlerf et 

al., 2006; Kuusk et al., 2008; Förster et al., 2010). While the concept of a spectral 

library has been proven for spectrally homogeneous and stable features (e.g. geological 

formations), the spectral response of species varies with plant phenology, stress, and 

environmental conditions (Kumar et al., 2001). This variation impairs the transferability 

of relations between vegetation and spectra and hence affects the use of spectral 



 

 

libraries (Feilhauer and Schmidtlein, 2011). However, if the complete vegetation period 

can be covered with measurements of field spectra, a relation between remote sensing 

imagery and a spectral library is possible for a given date of acquisition (Förster et al., 

2011), assuming that environmental conditions and the occurrence of plant stress are 

homogeneous for the mapped area. 

 

4.6.2.6 Fuzzy sets for forest mapping  

The assessment of ecological complexity of forest landscapes relies largely on field 

monitoring (Ferretti and Chiarucci, 2003). Meanwhile, as previously stated, remote 

sensing offers the capability of obtaining a synoptic information over large areas in order 

to guide sampling design for improving their efficiency (Rocchini et al., 2005). In this 

view forest related maps are increasingly being used in landscape planning and 

management (see e.g. Romero-Calcerrada and Perry, 2004; Adra et al 2013; ). But its 

use is very rare in tropical forests.  

Noteworthy, one of the most pressing needs in landscape ecology is to take into account 

the uncertainty related to patterns in the landscape (Bolliger, 2005). Analyzing landscape 

patterns with a-priori defined thresholds and boundaries may lead to losses in the 

capability of catching their actual complexity, by hampering the ability to account for 

continuous landscape variability over space (Mairota et al., 2015 b; Redon et 2014). 

Fuzzy set theory can aid in maintaining uncertainty information related to each class. The 

concept of fuzzy sets was first introduced by Zadeh (1965), and have been widely used 

in ecology dating back to 1980’s (see as an example Feoli and Zuccarello, 1988; Roberts, 

1996; Ricotta and Anand, 2006).  

The principle behind fuzzy set theory is that the situation of one class being exactly right 

and all other classes being equally and exactly wrong often does not exist. Conversely, 

there is a gradual change with continuous values of membership, generally from 0 to 1 

(Gopal and Woodcock, 1994). 

Two major assumptions lead us to consider fuzzy sets as a powerful tool for maintaining 

uncertainty information when aiming at mapping and analysing landscape patterns: (i) 

membership of ecological entities to classes is not forced to occur within the integer 

range [0,1] as in Boolean logic, (ii) considering different classes [A,B,…,N] the sum of 

membership values does not equal 1 for each pixel or polygon. Thus, different classes 

may overlap to different degrees overcoming the traditional restriction on the mutually 

exclusive nature of map classes (Rocchini and Ricotta, 2007).  

Strictly speaking, one pixel or polygon may show a high membership to broadleaf forests 

(e.g., =0.8) and to grassland (e.g., =0.7) as well. Noteworthy pixels should include 

several classes. The spectral signatures for these mixed pixels (Small, 2004) are due to a 

combination of classes (Gibson and Power, 2000). This may hardly be solved by a simple 

dominance criterion. Moreover, property (ii) aids in avoiding difficulties in building a-

priori exhaustive hierarchical classification schemes. 

However, crisp classification cannot be dismissed, overall considering a basic conceptual 

drawback related to fuzzy set theory. This is related to the deterministic relationship 

between each object and each class which is a paradox since in this case the description 

of uncertainty is made with class membership values that are a-priori suspected to be 

certain. In other words, a statement describing a vague phenomenon must be 

necessarily vague. This has led to the possibility of assuming for each level of the fuzzy 

membership function a fuzzy set membership . This is also known as type 2 fuzzy set, or 

second order vagueness which has been extended to higher order vagueness concept by 

Varzi (2003). Refer to Fisher et al. (2007) for applied examples of higher order 



 

 

vagueness and type 2 fuzzy sets to mountain peak and coastal dune detection, 

respectively. 

This said, some papers have stressed the higher map accuracy reached by fuzzy 

classification with respect to a crisp one (see e.g. Shanmugam et al., 2006). In several 

cases expert knowledge is advocated as fundamental components in deriving crisp land 

cover maps; although this presents a challenge of adequately quantifying the complexity 

of a landscape (Comber et al., 2005). Hence, habitats are typically expected to gently 

and continuously vary within a landscape rather than abruptly change. Thus, it is crucial 

that geographical maps and databases, which are rapidly created after the spread of GIS, 

account for uncertainty problems (Fisher, 2000; Baja et al., 2002).  

 

4.6.2.7 Open Challenges 

Nagendra and Rocchini (2008) have reviewed issues related to the resolution of remotely 

sensed data to study forest biodiversity (Figure 4.6.2.7). They also provide an extensive 

table with all the characteristics of such sensors (see Table 1 in Nagendra and Rocchini, 

2008; see also section 4.1 of this sourcebook). 

While most of the relevant research is focused on throughput of hyper-spatial resolution 

data, Nagendra and Rocchini (2008) found that 'the devil is in the detail'. In other words, 

they provided a number of examples where remote sensing data with a higher 

fragmentation of the electromagnetic spectrum (higher spectral resolution) may 

outperform high spatial resolution data in studies of species patterns over space and 

time. This is particularly true considering the high level of noise in the spectral signal 

deriving from shadows when using hyper-spatial data.  

This work was further reinforced by He et al. (2011) who provided a number of useful 

examples of studies relying on hyperspectral remote sensing to detect invasive species in 

a number of different habitats and sites, from riparian forest vegetation in South 

California (Hamada et al., 2007) to terrestrial ecosystems in South Africa (Rouget et al. 

(2003). 

As previously stated, in some cases, direct detection of invasive plant species may rely 

on the spectral signature of a given species in the electromagnetic space. As an example, 

Somers and Asner (2012) distinguished invasive and non-invasive tree types using 

spaceborne imaging spectroscopy to analyse the seasonal dynamics of the canopy 

hyperspectral reflectance properties.  

Moreover, in some cases, the hyperspectral information has been supported by LiDAR-

based Digital Elevation Models (DEM, Asner et al. 2010), proving the availability of a wide 

range of remote sensing products for forest species detection. 

When dealing with forest species, remote sensing direct detection is one of the most 

valuable methods and is akin to niche based modelling techniques. This is true also when 

relying on multispectral sensors, i.e. when fewer spectral bands are available. As an 

example, Pouteau et al. (2011), modelling the distribution of Miconia calvescens in Tahiti 

tropical rain forests, demonstrated that relying on direct remote sensing may outperform 

niche based modelling techniques, by comparing Support Vector Machine classification of 

Quickbird images (spatial resolution 2.44m at nadir) versus the GARP (Genetic Algorithm 

for Rule set Production) developed by Stockwell and Peters (1999).  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.2.7. Mapping forest habitats might be straightforward if proper imagery is 

selected. This example represents a dry tropical forest area in the Chitwan district 

(Nepal), covered by (a) a Landsat ETM+ image of March 2000 and (b) an IKONOS image 

of October 2001. Figure reproduced from Nagendra and Rochcini (2008). 

 

4.6.3 Concluding Remarks  

Tree species identification of tropical forests based on remotely-sensed data raises 

particular interest among the ecology and forestry communities. Information about the 

presence and spatial distribution of key species contributes to biodiversity mapping, and 

detection of floristic gradients. Thus it helps in better understanding ecological processes 

occurring in these complex ecosystems and the influence of various factors, from 

hydrology to climate effects and direct human activity. The exact location of 

commercially interesting individuals may also decrease damages due to industrial forest 

exploitation, thus indirectly contributing to forest conservation on the long term.  

We described the general principle and recent advances made by research in the domain 

of tree species identification in tropical ecosystems. We explained that the main 

 



 

 

classification algorithms which can be appropriately used for such tasks are currently 

implemented in any modern programming languages and image processing software. 

However, complex ecosystems such as dense tropical forests still require particular 

efforts and research for operational applications in the domain of tree species mapping at 

regional to local scale. Despite increasing data availability and ongoing algorithmic 

advances for domains such as multi-source data integration (including multi-temporal 

and multi-resolution data) and uncertainty mapping, no operational method currently 

exist. These limitations are due to the technical expertise required to apply advanced 

methods including data fusion, image segmentation, as well as the cost induced by 

remote sensing data acquisition, and field data collection. Despite the increasing 

availability of satellite remote sensing images (such as the Copernicus Sentinel program), 

high potential data sources such as imaging spectroscopy still depend on costly airborne 

acquisitions, and their processing also require advanced skills in high dimensionality data 

processing. Field data also cost money and time, but are still necessary in order to 

perform a training stage required by supervised and semi-supervised classifications.  

Finally, thematic expertise also needs to be tightly linked to any operational method 

designed for such applications: identifying the best candidates for species discrimination 

(based on ecological or commercial considerations), and understanding and integrating 

seasonal dynamics of species or groups of species often appear necessary when seeking 

for optimal performances in tree species mapping. Such prior knowledge helps in remote 

sensing data selection, field data collection, decision for methodological options, and 

reduction of financial costs.  
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5 EMERGING APPROACHES 

5.1 UPCOMING EARTH OBSERVATION MISSIONS 

Brice Mora, GOFC-GOLD Land Cover Project Office 

Zoltan Szantoi, EC-JRC-LRM, Copernicus Land Monitoring Services, scientific officer 

Uta Heiden, DLR-DFD, Applied Spectroscopy Team, EnMAP Mission Application Support 

 

5.1.1 General considerations  

Section 5.1 aims to present upcoming missions and sensors relevant to tropical forest 

monitoring. Table 5.1.1.1 classifies sensors into two broad types: passive and active. 

Sensors are described according to the most important parameters (spatial resolution, 

spectral range and resolution, swath width and revisit time). The table lists the relevant 

EBVs each sensor is most likely to contribute to. Sub-section 5.1.2 presents upcoming 

navigations systems. The section will be updated on a yearly basis to report on the new 

EO missions. Note section 4.1 of the sourcebook lists sensors and associated datasets 

already available, and discusses further key parameters to best choose datasets.  

Sensors are described also in broad spatial resolution categories. In this sourcebook, the 

chosen ground spatial resolution categories are as follows: Very High: <=1m, High: 

<=10, Medium: <=30m, Low: <=300m, Coarse <=1,000m. Note the spatial resolution 

for LiDAR datasets is measured by the distance between the centres of consecutive 

beams, and between the scanning lines. The beam divergence affects also the spatial 

resolution. This information that is not available yet for the LiDAR systems reported in 

Table 5.1.1.1, will be added in future releases of the sourcebook. 

In Table 5.1.1.1, column “Expected relevance to EBVs” lists the EBVs relevant to tropical 

forest monitoring the sensors can contribute to. Table 5.1.1.2 provides the coding 

number of the EBVs used in Table 5.1.1.1. For more information on the six EBVs covered 

by this sourcebook, please check: http://geobon.org/essential-biodiversity-variables/ebv-

classes-2/. 

With the wider availability and free access of EO data, it is interesting to note virtual 

constellations (VC) for land and water characterization gain in importance, and are also 

strongly supported by the Committee on Earth Observation Satellites (CEOS) (Wulder et 

al., 2015). Per definition, a VC defines a virtual satellite constellation as a “set of space 

and ground segment capabilities that operate in a coordinated manner to meet a 

combined and common set of Earth Observation requirements” (Source: 

http://www.ceos.org/index.php?option=com_content&view=article&id=275). 

The interoperability of sensors is a key feature to enlarge the temporal density of 

available data (Reiche et al., 2015). At the same time, analysis techniques have to deal 

with a change from pixels-based concepts towards scene based concepts, to explore the 

full potential of such VC. 

For further information on upcoming observing systems please go online:  

- National Aeronautics and Space Administration (NASA, USA): 

http://eospso.nasa.gov/future-missions  

- European Space Agency (ESA): 

https://earth.esa.int/web/guest/missions/esa-future-missions  

- the German Aerospace Center (DLR) compiles information on (past, present and) future 

space-borne imaging spectroscopy missions: 

http://geobon.org/essential-biodiversity-variables/ebv-classes-2/
http://geobon.org/essential-biodiversity-variables/ebv-classes-2/
http://www.ceos.org/index.php?option=com_content&view=article&id=275
http://eospso.nasa.gov/future-missions
https://earth.esa.int/web/guest/missions/esa-future-missions


 

 

http://www.enmap.org/sites/default/files/pdf/Hyperspectral_EO_Missions_2015_06_22_

FINAL.pdf  

- Brazilian Space Agency – the planned missions up to 2021 (in Portuguese)  

http://www.aeb.gov.br/wp-content/uploads/2013/01/PNAE-Portugues.pdf  

 

 

http://www.enmap.org/sites/default/files/pdf/Hyperspectral_EO_Missions_2015_06_22_FINAL.pdf
http://www.enmap.org/sites/default/files/pdf/Hyperspectral_EO_Missions_2015_06_22_FINAL.pdf
http://www.aeb.gov.br/wp-content/uploads/2013/01/PNAE-Portugues.pdf


 

 

Table 5.1.1.1: List of upcoming sensors and missions relevant to tropical forest monitoring 

 

Platform/ 

Mission 

Life 

span 

Revisit 

time 

period 

Spatial 

Resolution 

(m) 

Swath 

(km) 
Wavelength Availability 

Expected 

relevance to 

EBVs 

Reference 

Passive sensors 

Hyperspectral 

PRISMA 
2016-

2022 
7 days 

PAN 2.5-5 

Hyp 20-30 
30-60 

PAN 

0.4-0.7 µm 

VNIR 

0.4–1.0 µm 

SWIR 

0.9-2.5 µm 

? 1, 2 
http://www.asi.it/en/activity/

observation-earth/prisma  

EnMAP 
2018-

2022 

≤ 4 days 

(± 30° 

off-nadir 

tilt) 

≤ 21 

days (± 

5° off-

nadir tilt) 

30 30 

VNIR  

0.4-1 μm 

SWIR  

0.9-2.4 μm 

Free for 

scientific 

applications 

1, 2, 5 www.enmap.org  

HISUI/ 

ISS 

2019-

2021 
60 days 

20m (along 

track) 

30m (across 

track) 

20 

VNIR 

0.4-0.9 μm 

SWIR 

0.9-2.5 μm 

Currently 

discussed 
1, 2, 3 

http://www.grss-ieee.org/wp-

content/uploads/2014/12/201

4_07_ISIS_Session1_Mission

/Matsunaga_HISUI_Status_0

7final.pdf  

HYSPIRI 
2020-

2024 

VSWIR 

16–19 

days 

TIR 5 

days 

VSWIR 

30–60 

TIR 60 

VSWIR 

150 TIR 

600 

VSWIR  

0.3–2.5 μm 

TIR  

3-12 μm 

? 1, 2, 5 https://hyspiri.jpl.nasa.gov/  

DESIS 
2016-

2020 
~50 days 30 30 0.4-1 μm 

Free for DLR 

& partners, 
1, 2 

http://www.dlr.de/os/desktop

default.aspx/tabid-

http://www.asi.it/en/activity/observation-earth/prisma
http://www.asi.it/en/activity/observation-earth/prisma
http://www.enmap.org/
http://www.grss-ieee.org/wp-content/uploads/2014/12/2014_07_ISIS_Session1_Mission/Matsunaga_HISUI_Status_07final.pdf
http://www.grss-ieee.org/wp-content/uploads/2014/12/2014_07_ISIS_Session1_Mission/Matsunaga_HISUI_Status_07final.pdf
http://www.grss-ieee.org/wp-content/uploads/2014/12/2014_07_ISIS_Session1_Mission/Matsunaga_HISUI_Status_07final.pdf
http://www.grss-ieee.org/wp-content/uploads/2014/12/2014_07_ISIS_Session1_Mission/Matsunaga_HISUI_Status_07final.pdf
http://www.grss-ieee.org/wp-content/uploads/2014/12/2014_07_ISIS_Session1_Mission/Matsunaga_HISUI_Status_07final.pdf
https://hyspiri.jpl.nasa.gov/
http://www.dlr.de/os/desktopdefault.aspx/tabid-9294/16011_read-39367/
http://www.dlr.de/os/desktopdefault.aspx/tabid-9294/16011_read-39367/


 

 

Commercial 9294/16011_read-39367/  

SHALOM 
2019-

2023 
2 days 

PAN  

2.5 

VNIR-SWIR 

10 

10 

PAN  

0.4-0.5 μm 

VNIR 

 0.4-1.0 μm 

SWIR  

0.9-2.7 μm 

Commercial 1, 2, 3, 4 
http://space.gov.il/en/node/1

144  

HYPXIM 
2020-

2030 

3 days 

(± 60° 

off-nadir 

tilt), or 

19 days 

PAN 2 

VSWIR <8 

TIR 100 

16 

VSWIR 

0.4-2.5 μm 

TIR 

8-12 μm 

? 1, 2, 3, 5 

http://www.researchgate.net/

publication/228518155_HYPX

IMA_hyperspectral_satellite_

defined_for_science_security

_and_defence_users  

FLEX 
2020-

2023 
19 days 300-500 105-150 0.5-0.7 μm ? 2, 5 

http://www.esa.int/Our_Activ

ities/Observing_the_Earth/Th

e_Living_Planet_Programme/

Earth_Explorers/Future_missi

ons/Glowing_plants_a_sign_o

f_health  

Multispectral 

WorldView 4 

(GeoEye 2) 

2016-

>2026 
~ 3 days 

PAN 0.31 

MS 1.2 
14.5 PAN/MS Commercial 1, 2, 3, 5 

http://investor.digitalglobe.co

m/phoenix.zhtml?c=70788&p

=irol-

newsArticle&ID=1953904  

ALOS 3 
2019- 

2026 
? 0.8 50 PAN/VIS/NIR Commercial 1, 2, 3, 5 

https://directory.eoportal.org

/web/eoportal/satellite-

missions/a/alos-3  

CartoSAT-

2C/2D/2E 
2016- ? 

PAN 0.62 

MS <2 
? PAN/MS ? 1, 2, 3, 5 

http://www.sac.gov.in/SACSI

TE/asac-ongoing-rsp.html  

DMC3 / 

Beijing 2 

constellation 

2015-

2021 
1 day 

PAN 1 

MS 4 
23 PAN/MS ? 1, 2, 3, 5 

http://spacenews.com/indias-

pslv-lofts-uk-built-earth-

observation-satellites-leased-

by-chinese-firm/  

VENµS 
2016- 

2018 
2 days 5, 10 ? VIS/NIR ? 1, 2, 3, 5 

http://missions-

scientifiques.cnes.fr/VENUS/  

Amazônia 2016- 4 days 40 720 VIS/NIR ? 1, 2, 3, 4, 6 http://www.inpe.br/produtos

http://www.dlr.de/os/desktopdefault.aspx/tabid-9294/16011_read-39367/
http://space.gov.il/en/node/1144
http://space.gov.il/en/node/1144
http://www.researchgate.net/publication/228518155_HYPXIMA_hyperspectral_satellite_defined_for_science_security_and_defence_users
http://www.researchgate.net/publication/228518155_HYPXIMA_hyperspectral_satellite_defined_for_science_security_and_defence_users
http://www.researchgate.net/publication/228518155_HYPXIMA_hyperspectral_satellite_defined_for_science_security_and_defence_users
http://www.researchgate.net/publication/228518155_HYPXIMA_hyperspectral_satellite_defined_for_science_security_and_defence_users
http://www.researchgate.net/publication/228518155_HYPXIMA_hyperspectral_satellite_defined_for_science_security_and_defence_users
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/Future_missions/Glowing_plants_a_sign_of_health
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/Future_missions/Glowing_plants_a_sign_of_health
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/Future_missions/Glowing_plants_a_sign_of_health
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/Future_missions/Glowing_plants_a_sign_of_health
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/Future_missions/Glowing_plants_a_sign_of_health
http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/Future_missions/Glowing_plants_a_sign_of_health
http://investor.digitalglobe.com/phoenix.zhtml?c=70788&p=irol-newsArticle&ID=1953904
http://investor.digitalglobe.com/phoenix.zhtml?c=70788&p=irol-newsArticle&ID=1953904
http://investor.digitalglobe.com/phoenix.zhtml?c=70788&p=irol-newsArticle&ID=1953904
http://investor.digitalglobe.com/phoenix.zhtml?c=70788&p=irol-newsArticle&ID=1953904
https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-3
https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-3
https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-3
http://www.sac.gov.in/SACSITE/asac-ongoing-rsp.html
http://www.sac.gov.in/SACSITE/asac-ongoing-rsp.html
http://spacenews.com/indias-pslv-lofts-uk-built-earth-observation-satellites-leased-by-chinese-firm/
http://spacenews.com/indias-pslv-lofts-uk-built-earth-observation-satellites-leased-by-chinese-firm/
http://spacenews.com/indias-pslv-lofts-uk-built-earth-observation-satellites-leased-by-chinese-firm/
http://spacenews.com/indias-pslv-lofts-uk-built-earth-observation-satellites-leased-by-chinese-firm/
http://missions-scientifiques.cnes.fr/VENUS/
http://missions-scientifiques.cnes.fr/VENUS/
http://www.inpe.br/produtos_servicos/engenharia_satelites/amazonia1.php


 

 

1/1B _servicos/engenharia_satelite

s/amazonia1.php  

Sentinel 

3A/B 

2017- 

2024 

1-2 days 

S3 A&B 
300 1300 VIS/NIR Free 1, 2, 5 

https://directory.eoportal.org

/web/eoportal/satellite-

missions/c-

missions/copernicus-sentinel-

3  

 

GCOM 

C1/2/3 

series 

2016- 

2028 
2-3 days 

250-500-

1000 

1150-

1400 
VIS/NIR/TIR ? 1, 2, 5 

http://global.jaxa.jp/projects/

sat/gcom_c/  

Active sensors 

Synthetic Aperture Radar (SAR) 

NISAR 
2020-

2022 
? multiple multiple L/S-dualB ? 3, 4, 5 http://nisar.jpl.nasa.gov/  

NovaSAR 

S1/2/3 

constellation 

2016-

2023 
1 day multiple multiple S-band Commercial 3, 4, 5 

http://www.sstl.co.uk/Blog/N

ovember-2013/NovaSAR-

wins-an-Innovation-Award-

from-the-IET  

RADARSAT 

C1/2/3 

Constellation 

2018- 4 days multiple multiple C-band Commercial 3, 4, 5 

http://www.asc-

csa.gc.ca/eng/satellites/radar

sat/default.asp  

BIOMASS 
2020- 

2025 
≤25 days 

200 

50 
? P-band Free 3, 4, 5 

http://esamultimedia.esa.int/

docs/EarthObservation/SP132

4-1_BIOMASSr.pdf  

Light Detection And Ranging (LiDAR) 

ICESat 2 
2018-

2022 
? ? ? 532 nm ? 3, 4, 5 

http://icesat.gsfc.nasa.gov/ic

esat2/index.php  

GEDI 2019- ? ? ? 1064 nm Free 3, 4, 5 
http://science.nasa.gov/missi

ons/gedi/  

 

 

http://www.inpe.br/produtos_servicos/engenharia_satelites/amazonia1.php
http://www.inpe.br/produtos_servicos/engenharia_satelites/amazonia1.php
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-3
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-3
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-3
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-3
https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-3
http://global.jaxa.jp/projects/sat/gcom_c/
http://global.jaxa.jp/projects/sat/gcom_c/
http://nisar.jpl.nasa.gov/
http://www.sstl.co.uk/Blog/November-2013/NovaSAR-wins-an-Innovation-Award-from-the-IET
http://www.sstl.co.uk/Blog/November-2013/NovaSAR-wins-an-Innovation-Award-from-the-IET
http://www.sstl.co.uk/Blog/November-2013/NovaSAR-wins-an-Innovation-Award-from-the-IET
http://www.sstl.co.uk/Blog/November-2013/NovaSAR-wins-an-Innovation-Award-from-the-IET
http://www.asc-csa.gc.ca/eng/satellites/radarsat/default.asp
http://www.asc-csa.gc.ca/eng/satellites/radarsat/default.asp
http://www.asc-csa.gc.ca/eng/satellites/radarsat/default.asp
http://esamultimedia.esa.int/docs/EarthObservation/SP1324-1_BIOMASSr.pdf
http://esamultimedia.esa.int/docs/EarthObservation/SP1324-1_BIOMASSr.pdf
http://esamultimedia.esa.int/docs/EarthObservation/SP1324-1_BIOMASSr.pdf
http://icesat.gsfc.nasa.gov/icesat2/index.php
http://icesat.gsfc.nasa.gov/icesat2/index.php
http://science.nasa.gov/missions/gedi/
http://science.nasa.gov/missions/gedi/
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Table 5.1.1.2. List of acronyms and coding numbers of EBVs used in table 5.1.1.1. 

List of acronyms Coding number of EBVs 

MS: Multi spectral 

NIR: Near infrared 

Pan: Panchromatic 

TIR: Thermal infrared 

VIS: Visible 

1- Vegetation phenology 

2- Net primary productivity 

3- Ecosystem extent and fragmentation 

4- Habitat structure 

5- Disturbance regime 

 

 

5.1.2 Navigation systems 

Global navigation satellite systems (GNSS) are used as crucial data providers for many 

remote sensing applications ranging from determining an accurate position of the user on 

the surface of the Earth to land cover classification of remotely sensed imagery. The only 

two existing and globally operational systems are the Global Positioning System (GPS) 

backed by the United States of America and the GLObal NAvigation Satellite System 

(GLONASS) funded by the Russian Federation. However, recently several initiatives were 

either started existing regional system are being expanded to global coverage. 

Table 5.1.2.1. Developing/upcoming global or large scale regional navigation satellite 

systems 

System/Provider Global 

scale 

Open 

access 

maximum 

positional 

accuracy 

First fully 

operational 

year 

Operational 

satellite 

units 

(2015) 

Final 

Number of 

satellite 

units 

BeiDou/China x 10m 2020 20 35 

Gallileo/European 

Union 

x 1m 2020 8 30 

IRNSS/India  10m 2016 4 7 

CYGNSS*/USA x  2016 0 8 

QZSS/Japan  7.5m 2023 1 7 

 

Indian Regional Navigation Satellite System (IRNSS)  

http://www.isro.gov.in/irnss-programme  

 

Quasi-Zenith Satellite System 

http://qzss.go.jp/en/technical/downloads/isos7j0000000bl4-att/qzss_pamphlet_201503.pdf  

http://www.esa.int/Our_Activities/Navigation/The_future_-_Galileo/What_is_Galileo  

 

http://www.isro.gov.in/irnss-programme
http://qzss.go.jp/en/technical/downloads/isos7j0000000bl4-att/qzss_pamphlet_201503.pdf
http://www.esa.int/Our_Activities/Navigation/The_future_-_Galileo/What_is_Galileo
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CYGNSS (Cyclone Global Navigation Satellite System) – specialized positioning system 

not designed for direct positioning, rather to measure ocean surface wind speed using direct 

and reflected GPS signals  

http://clasp-research.engin.umich.edu/missions/cygnss/ 

 

5.1.3 Key References for section 5.1 

Reiche, J., Verbesselt, J., Hoekman, D., & Herold, M. (2015) Remote Sensing of 

Environment Fusing Landsat and SAR time series to detect deforestation in the 

tropics. Remote Sensing of Environment, 156, 276–293. 

doi:10.1016/j.rse.2014.10.001. 

Wulder, M. A., Hilker, T., White, J. C., Coops, N. C., Masek, J. G., Pflugmacher, D., & 

Crevier, Y. (2015) Virtual constellations for global terrestrial monitoring. Remote 

Sensing of Environment, 170, 62–76. doi:10.1016/j.rse.2015.09.001. 

 

  

http://clasp-research.engin.umich.edu/missions/cygnss/
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5.2 AIRBORNE SENSORS 
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5.2.1 Lidar 

5.2.1.1  Background 

Laser altimetry, more commonly known as LiDAR (light detection and ranging), is an active 

remote sensing technology that directly measures the three-dimensional structure of a 

scene. From these measurements can be derived highly accurate estimations of plant 

canopy height and structure, as well as subcanopy topography (Lefsky et al. 2002). Lidar 

metrics are shown to be highly correlated with crucial forest structural characteristics such 

as above ground biomass (AGB) (Drake et al. 2003). Lidar systems are effective at 

estimating AGB in high-biomass ecosystems where other remote sensing technologies, such 

as radar, may fail (Lefsky et al. 2002). 

Airborne LiDAR systems send out individual laser pulses and determine the range from the 

sensor to the object by measuring the time it takes for a pulse to return. The three-

dimensional position and angular attitude of the sensor is recorded using a Global 

Navigation Satellite System (GNSS) and an Inertial Navigation System (INS). These 

observations allow the LiDAR system to record precise, georeferenced positions of the LiDAR 

pulse returns. Contemporary small-footprint airborne LiDAR systems can send out up to 

500,000 pulses per second. 

Lidar sensors can be broadly classified into two types: large-footprint and small-footprint 

systems. The term “footprint” refers to the area of the ground that is covered by the laser 

beam. Large-footprint LiDAR (roughly 10 m – 100 m diameter footprint) can deliver 

decimeter-level vertical resolution and accuracy with roughly < 2 m horizontal accuracy, 

specifications which make it well suited for biomass estimation on the landscape scale 

(Omasa et al. 2007). Large-footprint systems record and analyze the full waveform of the 

return signal, allowing them to capture the vertical structure of multi-tiered canopy and the 

topography of the ground beneath (Blair et al. 1999). Airborne large-footprint LiDAR was 

developed largely as proof of concept for spaceborne systems. Currently there is no 

availability of airborne large-footprint LiDAR beyond NASA’s Land, Vegetation, and Ice 

Sensor (LVIS). A spaceborne large-footprint LiDAR mission, ICESat-2, is set to launch in 

2017, though its ability to measure forest characteristics remains to be seen. 

Small-footprint systems (typically < 1 m diameter footprint) offer centimeter-level vertical 

resolution and meter-level horizontal and vertical accuracy. Because of the smaller 

footprint, these systems must record many more points per square meter to offer coverage 

similar to that obtained by large-footprint systems. Small-footprint systems typically record 

a single return or a small number of returns (Omasa et al. 2007) but newer systems allow 

for recording the full waveform of the return. In contrast to discrete return systems, in 

which a certain threshold of return energy must be detected to record a return, a full 

waveform system records the entire energy profile of the return laser pulses (Mallet and 

Bertar 2009). The number of discrete returns that the system records, or whether the 
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system analyses the full waveform, dictates how much information about the canopy and 

understory is recorded. The higher resolution data collected by small-footprint systems is 

apt for detecting individual trees and for the generation of high-resolution topographic 

models. 

The vast majority of airborne LiDAR systems are scanning systems that measure swaths of 

points beneath the aircraft. There are also profiling LiDAR systems that record data along a 

single, narrow line beneath the aircraft, which is useful for a sampling approach. 

5.2.1.2  Data processing overview 

Discrete return LiDAR data is most often presented as a three-dimensional point cloud, 

where each point represents the location where the outgoing pulse was intercepted, and 

from where the individual return pulse originated. These points are georeferenced by the 

LiDAR data provider so that their locations are estimates of real-world position. A handful of 

methods of representing full waveform LiDAR data exist, many of which effectively 

discretize the full waveform into numerous individual points of interest (Drake et al. 2002, 

Reitberger et al. 2009). An emerging standard data exchange format for full waveform data, 

PulseWaves, is openly available and compatible with the existing LAS format for discrete 

return LiDAR point clouds (Isenburg 2012). 

An essential step in processing LiDAR data is classifying the points as either ground or non-

ground returns. Those points classified as ground are used to generate a bare  Earth digital 

terrain model (DTM). The non-ground (i.e., vegetation) points can then be compared to the 

DTM, from which metrics such as canopy height and canopy cover can be derived. Many 

software packages, both proprietary and open-source, are capable of LiDAR point cloud 

processing, including FUSION, LAStools, and SAGA GIS to name but a few. 

5.2.1.3  Lidar and habitat structure 

Lidar metrics such as canopy height, canopy cover, and subcanopy topography have been 

shown consistently to be of equal or greater accuracy than field-based estimates and 

estimates made from high-resolution aerial photography. From these metrics, key 

characteristics can be modeled, including AGB, basal area, and canopy volume (Dubayah 

and Drake, 2000). These relationships between directly observed LiDAR metrics and forest 

characteristics are found through non-species specific allometric models, such as those 

proposed by Chave et al. (2005).  

Drake et al. (2002 and 2003) tested the utility of the LVIS large-footprint airborne LiDAR 

system for estimating forest characteristics in a tropical wet forest. The study found LiDAR 

metrics to be highly correlated with field-based measurements of stem diameter, AGB, and 

basal area. Building upon the work of Chave et al. (2005), Asner et al. (2008) used small-

footprint airborne LiDAR to better quantify AGB beyond the hectare scale, a nontrivial task 

in complex tropical forests. It is worth noting that Asner et al. found that airborne LiDAR 

could directly measure canopy height in the closed canopy conditions, whereas field 

measurements relied on species-specific allometric equations to derive tree height from 

stem diameter and wood density. Valgio Laurin et al. (2014) among others demonstrate an 

improvement of AGB estimates by merging hyperspectral features, which by themselves are 

relatively ineffective at predicting AGB, with small-footprint airborne LiDAR data. 

These highly correlated relationships between LiDAR metrics and habitat structure variables, 

particularly AGB, are shown to outperform other remote sensing technologies such as radar 

and passive optical sensors, especially as the study area increases (Zolkos et al. 2013). The 

study also shows that merging LiDAR data with data from other sensor types to improve 

AGB models. 



   

192 

Canopy height and vertical structure has been shown to be an effective predictor of 

biodiversity of birds and insects, among other taxa (Bergen et al. 2009). Despite the 

predicting power of forest characteristics that can be estimated with LiDAR, only a handful 

of studies have quantitatively assessed relationships between LiDAR-derived metrics and 

wildlife habitat (Vierling et al. 2008). Directly measured LiDAR metrics (e.g. altitude and 

canopy height) can be used to derive proxy variables such as forest gaps, canopy density 

and climate-related variables to evaluate biodiversity of beetles at the landscape scale 

(Müller and Brandl, 2009).  

Using various algorithms, individual trees can be detected and delineated from LiDAR data. 

This procedure has been better studied in boreal forests (Hyyppä et al. 2001, Koch et al. 

2006, etc.), where the spatial density of both individual trees and species is much smaller 

than in tropical biomes. Individual tree segmentation can be useful for species classification 

and physiological stress response, among other applications, especially when the LiDAR data 

is composited with data from passive sensors such as hyperspectral (Dalponte et al. 2008) 

or thermal data (Omasa et al. 2007). 

5.2.1.4  Designing and evaluating LiDAR surveys 

An effective LiDAR survey must be conjoined with field measurements to establish local 

relationships between AGB, basal area, and other target parameters with LiDAR metrics, as 

these allometric models, though not always species-specific, tend to be confined to local 

forest types (Chave et al. 2005). Once an adequate number of field measurements are 

made to reach the desired statistical significance of the study, the LiDAR data, collected 

over a larger area, can be used to accurately predict biodiversity variables essential to 

habitat structure. 

A key consideration when designing a LiDAR survey or evaluating the usefulness of an 

existing LiDAR dataset is the number of pulse returns per unit area, often referred to as 

pulse density or sampling density. For a small-footprint airborne system, a pulse density of 

>5 points m-2 is desirable to avoid underestimating canopy height. This phenomenon is due 

to an oversampling of tree crown shoulders and an undersampling of the local maxima of 

treetops (Omasa et al. 2007). Also, it has been demonstrated that the optimal pulse density 

for the generation of a DTM or digital surface model (DSM) should be greater than or equal 

to the desired spatial resolution of the DTM or DSM (Liu, 2008).  

For a scanning LiDAR system, both the width of the beam swath and the size of the beam 

footprint are directly correlated with the aboveground height of the sensor. For a biomass 

sampling survey, a higher flying height is desirable, whereas a need for finer resolution data 

(e.g. individual tree detection) may require a lower flying height. These factors are also 

dependent upon the sampling rate (i.e. pulses per second) and other specifications of the 

sensor being used. A LiDAR data provider can easily control for pulse density, width of beam 

swath, proper accuracy assessment, and other considerations through proper mission 

planning.  

Lidar data and have been shown to be effective in biomass estimation when applied both in 

a wall-to-wall manner (i.e., complete coverage of a study site) and in a conventional 

sampling-based manner, an approach in which swaths of LiDAR data, perhaps separated by 

many kilometers, are used to make estimates on habitat structure for a more expansive 

area of interest. For either approach, the area of the scanned site(s) is positively correlated 

to the accuracy of estimates of habitat structure such as AGB. This is due to the effects of 

trees just outside the boundaries of the study areas whose canopies, in a planimetric sense, 

extend into the study area. These edge effects can be mitigated by increasing the plot sizes.  
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5.2.1.5  Near-term developments in airborne LiDAR 

A recent development is a commercially-available Geiger-mode LiDAR sensor capable of 

collecting higher-resolution data at a higher sampling rate than a conventional scanning 

LiDAR sensor. The improvements in both resolution and sampling rate are attributed to the 

system’s shorter pulse duration and ability to record lower-energy returns, which allows for 

more precise detection of a pulse’s time of flight and for more pulses to be emitted per 

second. This Geiger-mode LiDAR sensor also captures spatial data from multiple view 

angles, which produces a point cloud with fewer occlusions. These specifications allow for 

the collection of airborne LiDAR data from a higher elevation and a higher rate of flying 

speed, offering a cost-effective method for obtaining three-dimensional information of a 

forested area (Romano 2015). 

Scanning LiDAR sensors, along with GNSSs and INSs, are becoming increasingly more 

lightweight and less expensive, allowing for the development of small Unmanned Aerial 

Systems (UAS) for airborne LiDAR surveying. These systems are limited to shorter flying 

times and a lower flying altitude than conventional aircraft, but are vastly less expensive 

and easier to deploy, making them well-suited for surveys at the landscape (< 1 km2) 

scale. 

5.2.1.6  Data costs and availability 

Costs for LiDAR data collection and processing are variable. A key consideration for an 

airborne LiDAR survey via conventional aircraft are fuel costs, which are affected by the 

distance between the study site and the aircraft’s point of departure. Estimates can be as 

low as USD$1 per hectare, but required minimum flyover areas of hundreds to thousands of 

hectares are common. However, LiDAR data may be more cost effective than data from 

passive or radar sensors despite the large front-end cost of data acquisition. Due to the 

density and accuracy of LiDAR data compared to other remote sensing data and pure field 

sampling, far fewer field observations are needed for a study to achieve a particular 

precision (Næsset et al., 2011). 

Requisition of airborne LiDAR data is available globally through commercial vendors, subject 

of course to national airspace jurisdictions. Some nations, such as Australia and the United 

States, make freely available those LiDAR data which are acquired for public use. Global 

coverage from the now-defunct spaceborne GLAS sensor are available via NASA. 

 

5.2.2  High-resolution aerial imagery 

5.2.2.1  Overview 

A conventional aerial imagery system equips a manned aircraft with a still frame camera or 

video camera to capture images of the terrain at high spatial resolution (< 1 m2 per pixel). 

As the camera records images, its location and angular attitude are typically recorded using 

a global navigation satellite system (GNSS) and an inertial navigation system (INS). 

Without these data, aerial images would be of little use outside of qualitative interpretation 

of the terrain and its vegetation and other features. Knowing the position and orientation of 

each image (or video frame) allows for further image processing and quantitative 

interpretation via the science of photogrammetry. 

If the images are captured in such a way that they provide stereo, overlapping coverage of 

the terrain (i.e., stereopairs of images overlap each other by 60% or more), it is possible to 

make precise and accurate three-dimensional measurements of the terrain in an absolute, 

real-world scale. These three-dimensional measurements are useful for generating digital 
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terrain models (DTMs) (Wolf et al. 2014), measuring individual tree heights, delineating 

individual tree crowns, and other key variables related to habitat structure (Brown et al. 

2005). This real-world scale, three-dimensional reconstruction of the terrain is possible 

without GNSS and INS if there are a sufficient number of control points visible in the 

images, but the placing and geolocating of these control points presents issues, especially 

over inaccessible or densely vegetated terrain. It is worth noting that, because of the need 

for stereo coverage of terrain, dense or closed forest canopies can drastically inhibit the 

utility of an aerial image survey. 

Another useful photogrammetric product is the orthophoto. A necessary condition of aerial 

images, by virtue of the camera being affixed to such a dynamic platform as an aircraft, is 

that camera is never facing exactly downward when recording images. Another necessary 

condition of any photograph is the effect of relief displacement, which makes objects appear 

to “lean outward” from the center of a photograph. Tall objects and objects further away 

from the center of an image exhibit greater relief displacement. The effects of tilt and relief 

displacement are corrected in a process called orthorectification. The product of 

orthorectification is the orthophoto, whose scale is uniform throughout, much like a 

conventional map (Wolf et al. 2014). Orthophotos can be used for two-dimensional mapping 

purposes such as coastline mapping and vegetation community mapping. 

There are numerous photogrammetric software packages for both three-dimensional 

reconstruction and orthophoto generation, many of which are intended for use by trained 

photogrammetric specialists.  

Conventional high-resolution aerial photography is not often utilized for monitoring 

biodiversity variables such as habitat structure, phenology, or species abundance. This could 

be due to overhead cost or the availability of more advanced aerial mapping technologies 

such as LiDAR. The emergence of small UAS allows for collection of high-resolution aerial 

imagery at a lower overhead cost, allowing for more widespread use for biodiversity 

monitoring. This development is discussed in detail in Section 4.2.2. 

5.2.2.2  Data costs and availability 

Aerial photography is available nearly worldwide at resolutions of > 1 m2 per pixel (GSD). 

Most wide-scale aerial image surveys are designed to efficiently cover large areas, and are 

therefore flown at higher altitudes, lowering the spatial resolution of the imagery. In nearly 

all cases, the photos have already been orthorectified, mosaicked, or otherwise processed, 

and individual photos are not typically available. This limits the use of the photography to 

two-dimensional mapping at a coarse scale. To obtain high-resolution imagery, one must go 

through a commercial vendor or an outfit with access to an aircraft. 

The largest source of cost in an aerial image survey besides ground control is use of the 

aircraft itself. Though these costs can vary by vendor, airborne image collection can cost 

around USD$300 per hour of flying time. The number of person-hours needed to process 

and analyze the data can also be extensive, especially when working with stereopair 

photographs to make three-dimensional measurements (Brown et al. 2005). 

5.2.2.3 Low-cost aerial photography 

Professional aerial photography requires expensive equipment to stabilize and/or record roll, 

pitch, and yaw, and other equipment that can put this technique out of reach of many 

organizations interested in using remote sensing for tropical forest diversity monitoring. 

There have been several projects that have successfully used low-cost aerial photography 

techniques to map tree species in tropical forests. These techniques have used relatively 

low-cost cameras without gyroscopes or IMUs, thus resulting in photographs that are 
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geometrically distorted. Non-photogrammetric cameras are pointed down from a rental 

plane and are either mounted to the aircraft or held by a photographer leaning out of the 

airplane. Ground control points, such as Mylar balloons in the canopy (Gonzalez et al. 2010; 

Trichon et al. 2001, 2006) and/or registering and warping aerial images to match a high-

resolution satellite image (Jansen and Bohlman 2008; Garzon-Lopez et al. 2013) allow 

placing individual crowns in the correct location not precisely, but with acceptable error for 

the application. Visual interpretation is then used to identify species with distinct vegetation 

or reproductive features. Because visual interpretation and color cameras are used, there is 

a limited number of tree species that can be identified out of the hundreds of species that 

occur in the canopy at each of these sites (Panama, Ecuador, Australia). However, the 

methodology, although time consuming to process the photos, is not expensive and can be 

used to map targeted species over wide areas for various applications (Caillaud et al. 2010; 

Garzon-Lopez et al. 2013, 2014, in press). See also chapters 4.2.2, 4.6.2, and 5.2.4 for 

more information on species mapping. 

 

5.2.3 Unmanned Aerial Systems  

5.2.3.1 Background 

Small unmanned aerial systems (UAS) have found uses in many disciplines, and are 

expected to revolutionize data collection in a diverse array of fields such as forestry (Merino 

et al., 2012), agriculture (Zhang and Kovacs, 2012), civil infrastructure (Seibert et al., 

2014), and mining (Liu et al., 2012). They have also garnered interest in spatial ecology, 

including mapping biodiversity (Anderson and Gaston, 2013). UAS are capable of rapidly 

collecting extremely high-resolution data, making them ideal for monitoring fine-scale 

changes in scene composition. Terms such as “unmanned aerial vehicle” (UAV) and “drone” 

are regularly used in literature, often with particular disciplines favoring one over the 

others. “UAS” is used here since it comprises more explicitly the vehicle (platform), onboard 

sensors, ground control station, and other support components needed to carry out aerial 

data acquisition, avoiding the trivialization of these important considerations. Because many 

call for surveillance and reconnaissance in areas potentially dangerous for manned missions, 

UAS have their beginnings in military applications (Eisenbeiss, 2004). Advances in 

technology and algorithms have led to widespread feasibility of small UAS in the civilian 

sector. Specifically, Global Navigation Satellite Systems (GNSS) receivers, Inertial 

Navigation Systems (INS), digital cameras, autonomous flight controllers (autopilots), and 

small high capacity batteries have made UAS possible. The fine-scale resolution data 

products provided by UAS enable them to capture parameters correlated with biodiversity 

metrics, such as small gaps in tree canopy, not obtainable from more conventional manned-

airborne or satellite data (Getzin, et al., 2012). 

5.2.3.2 General Characteristics 

UAS can be split into three main components: the platform; the sensor-suite payload; and 

the ground-control station. The platform consists of usually either a fixed-wing, or vertical 

take-off and landing (VTOL) multirotor vehicle (although there are balloon-based systems) 

and a flight controller. A fixed-wing and VTOL UAS are shown in Figures 5.2.3.2.1 and 

5.2.3.2.2, respectively. The flight controller steers the vehicle automatically based on input 

from sensors such as integrated INS and GNSS units. The sensor suite usually comprises at 

least a small digital RGB camera, although miniature multispectral, hyperspectral, thermal, 

and laser scanning sensors (among others) have been used. For UAS with higher payload 

capacities, multiple sensors can be mounted simultaneously. Sometimes the sensor suite 

also includes a GNSS receiver and/or INS distinct from, and more precise than, those on the 

flight controller. These are used for precision direct-georeferencing. Further, some systems 
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carry discrete data storage units, sensor-controlling computers, and timing synchronization 

units to correlate GNSS/INS data with sensor data. Scanning sensors, such as LiDAR and 

hyperspectral line imagers, require direct observation of position and orientation provided 

by GNSS/INS. The ground station comprises transmitters to relay instructions to the 

platform and to enable manual control if necessary, receivers to gather telemetered data 

from the platform and sensor suite, and a computer to process mission information. UAS 

are able to collect data in predefined areas-of-interest by navigating flight paths with 

precise horizontal and vertical parameters, practically impossible to navigate by manual 

control. Users plan flights based on desired coverage and data resolution, sensor 

characteristics, and battery capacity. The UAS platform then triggers the sensor 

continuously or at predetermined locations as it autonomously travels along the planned 

lines. 

5.2.3.3  Price 

There are a variety of commercially-available UAS ranging greatly in price and performance. 

A small multirotor UAS with a small action video camera that can stay aloft for 15-minutes 

can cost <$1000 USD. On the other hand, professional-grade systems with higher payload 

capacity and flight times can cost tens of thousands of dollars (USD). Payload sensors also 

have a wide range of prices. Off-the-shelf consumer grade cameras can be used for many 

applications, with mirrorless interchangeable-lens digital cameras preferred due to their 

light-weight and high-quality imagery. If users intend to integrate sensors on their own, 

care should be taken to select a camera that can communicate (via e.g. GigE) with the 

onboard computer to enable triggering, capture, storage, and correlation with the timing 

device. Miniature LiDAR scanners are priced in the range of about $1,000-$100,000 USD, 

and miniature hyperspectral scanners price can range from about $40,000-$90,000 USD. 

Sensor costs are correlated with capability, however they should be carefully selected based 

on the target application. GNSS/INS packages also have a wide range of prices. A small 

integrated GNSS/INS can cost from about $5,000-$60,000 USD. Similar to sensor selection, 

accuracy of these devices should also be carefully considered, since they may or may not be 

appropriate for the associated sensor suite.  

 

 

Figure 5.2.3.2.1 MAP-M4 VTOL Multirotor UAS vehicle 

(Courtesy of Micro Aerial Projects LLC). 
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Figure 5.2.3.2.2. Nova II Fixed-wing UAS vehicle (Courtesy of The University of Florida). 

 

5.2.3.4 Sensors  

Because onboard UAS sensors are normally scaled-down versions of those used in manned 

aerial platforms, the products are generally the same, but at different resolution. For 

example, miniature hyperspectral imagers may have a higher spatial resolution due to 

proximity of the sensor to scene, but lower radiometric resolution due to constraints 

stemming from miniaturization of the sensors. These trade-offs are unique to the sensor 

modalities, but some careful pre-analysis can reveal potential for specific applications 

relative to larger versions or distinctive capabilities. Pajeres (2015) provides an extensive 

overview of UAS applications including various associated sensors. Most common is the use 

of a frame camera operating in the visible spectrum, and there are numerous examples of 

applications employing these. UAS-mounted small multispectral (Kelcey and Lucieer, 2012) 

and hyperspectral sensors (Hruska, et al., 2012) have also become common for many 

applications. Note that although there are frame hyperspectral sensors for UAS (at the time 

of writing, two are known and reported in Bareth et al., 2015), typically, these sensors are 

line scanners. This necessitates direct georeferencing of each collected line, and thus a 

high-accuracy INS/GNSS unit is required to maintain spatial fidelity of the products. These 

additional components can be costly both monetarily and in weight required. Lightweight 

laser scanners are beginning to be used, with the first study involving a small UAS mounted 

with a laser scanner reported in 2010 (Jaakola et al., 2010). Laser scanners also require 

accurate INS/GNSS support units. More recently, researchers have combined light, low 

accuracy georeferencing hardware with supporting orientation data from computer vision 

methods applied to onboard videography to better utilize UAS laser scanners (Wallace et al. 

2012, 2014a, 2014b). Other sensors that have been used on UAS include video cameras, 

thermal cameras, near-infrared cameras, and radar (Pajeres, 2015). UAS with higher 

payload capacities can carry multiple sensors concurrently and collect data simultaneously. 

It is advisable to plan for combined payloads that minimize across-senor data redundancy, 

and allow for synchronization of capture when appropriate to facilitate processing and 

registration.  
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5.2.3.5 Planning and Collection 

The main considerations for flight planning are the sensors suite, the vehicle, take-off and 

landing locations, lines along which the vehicle flies, and the location of the base station. 

Sensors are selected based on the desired data type and coverage to be collected, with 

consideration for modular components such as lenses that influence resolution and 

collection time. The vehicle must be able to support the sensor and requisite auxiliary 

hardware to allow for sufficient flight time and therefore coverage. Here, weight restrictions 

and battery capacity are the limiting factors. The vehicle must also be able to be launched 

and land in the vicinity of the project area, preferably close to the base station. In densely 

forested areas, there is often not enough suitable terrain for launching and landing fixed-

wing vehicles, although vehicles capable of water landing are available (Watts, et al., 2010), 

and VTOLs may be more appropriate. Getzin et al. (2014) recommend VTOLs due to their 

stability leading to better orthophoto quality. Planning of the flight lines must take into 

consideration the area to be covered and other mission-specific parameters such as flying 

height and overlap. Flying height must be chosen first and foremost such that vertical 

obstructions are avoided, and such that the desired ground sample distance (GSD), a 

component of the data resolution in addition to resolving power of the lens in the case of 

cameras, is sufficient for the application. There are also strict regulations in some countries 

that govern the allowable height above ground that a UAS can fly. In typical manned 

photogrammetric missions, it is common for endlap (along-track overlap) to be around 

60%, with sidelap (across-track overlap) around 30% (Wolf et al. 2014). Due to the 

dynamic flight of small unmanned aircraft, these numbers are typically increased (to about 

70%-80% and ~60%, respectively) to ensure full stereo coverage (and therefore three-

dimensional reconstruction) in the case of frame photography. Flight lines are limited by 

battery capacity, and may sometimes need to be split into separate flights to obtain full 

coverage. Often, data must be georeferenced, and therefore some control must be 

introduced to the UAS. Ground control targets are preferred for frame sensors, although 

these can be problematic in forested areas since they may not be readily captured in the 

sensor data and surveying them can be a troublesome due to occlusion of GNSS signals by 

vegetation. Airborne control via GNSS/INS is a viable option (Turner et al., 2012), although 

some supplementary ground control is always advisable (Cramer et al., 2000). The base-

station should be near the take-off and landing zone, and should allow visual line-of-sight to 

the aircraft at all times. It is also important to consider possible occlusion of telemetered 

data between the base-station and aircraft. Loss of communication may lead to contingency 

routine execution by the UAS, and users should be aware how the platform will behave 

under these circumstances. In anticipation of widespread “in-house” acquisition and use of 

UAS by individuals, thorough operation, safety, and regulatory training for ground crew 

personnel is highly advisable to reduce the occurrence of mishaps.  

5.2.3.6 Data Products and Processing 

Since many applications call for a photogrammetric products and they are less expensive 

compared to other payloads and therefore ubiquitous, this section focuses on data and 

processing associated with frame camera sensors. With a standard small digital camera, 

UAS can provide a variety of data. This includes raw aerial imagery, naïvely stitched 

mosaics (photomaps), orthorectified mosaics, point clouds, and digital elevation models 

(DEM). The first two can provide information for planning and reconnaissance in hard-to-

visit areas, and the latter three can provide extremely accurate geospatial data used for 

modeling and analysis (Wolf et al., 2014). The amount of data that can be collected and 

area covered varies from platform to platform, and is dictated primarily on flight duration. 

Standard photogrammetric processing to produce orthophoto mosaics and 3D products can 

be achieved using one of a number of commercial and open-source options. These computer 

programs are often referred to as computer vision-based, however the algorithms they use 

to develop their high-accuracy products are based on photogrammetric models (Granshaw 
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and Fraser, 2015). Although the workflow and theory behind the software suites are very 

similar, each has moderate algorithmic variations and different capabilities. There are a 

several articles that compare software characteristics and capabilities of various packages 

(e.g. Gini et al., 2013; Sona et al., 2012; Turner et al., 2014). 

 

Figure 5.2.3.6.1. Dense point cloud generated from UAS-mounted camera imagery. The 

left portion is colored based on height (in metres), on the right is colored based on RGB 

imagery. 

Workflow for frame imagery from UAS follows the following general steps: 

1. Acquisition of imagery, navigation, and time-synchronization data 

2. Image-matching to produce the spatial relative orientation of imagery 

3. Absolute orientation of imagery relative to a mapping coordinate system using 

control via aerotriangulation, often with camera calibration parameters (such as focal 

length and lens distortion) resolved simultaneously  

4. Three-dimensional model generation via a second round of image feature 

matching, producing a dense point cloud from which a raster digital surface model 

can be obtained 

5. Orthophoto generation from imagery, orientation parameters, and digital 

surface model, essentially creating a spatially-accurate planimetric map 

It is important to include camera calibration parameters in the workflow process during the 

refined absolute orientation step. Although pre-mission calibration and definition of these 

parameters is possible with most software suites, the parameters of commercial off-the-

shelf cameras can change rapidly over time, necessitating re-calibration. Thus, performing 

the calibration for each mission is recommended. Time required for processing can be a 

major issue due to the extreme amount of data collected. A rule of thumb is that for each 

hour of collection from a consumer-grade camera, it will take 20 hours to process the data 

at the highest accuracy and resolution on a single high-end work-station. Less time is 

needed when processing at lower resolutions, and often a compromise is prudent. 

5.2.3.7 UAS and Biodiversity Tropical Forests  

UAS have been explored recently for evaluation of biodiversity in tropical forests, and are of 

much interest due their cost, mitigation of cloud effects associated with conventional remote 

sensing methods over tropical forests, and rapid repeatability of surveys (Anderson and 

Gaston, 2013). The studies mentioned here all used frame visible-spectrum digital cameras, 

although platforms were a mix of both fixed-wing and VTOL. Koh and Wich (2012) 

developed a low-cost fixed-wing UAS (<$2,000) and evaluated its performance in 
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Indonesia. They developed georeferenced mosaics, which can be used as near real-time 

land use/cover maps, and transects of videography were shown to be able to capture 

individual trees, and large mammals. They captured both a Sumatran orangutan and 

Sumatran elephant in UAS imagery, illustrating the potential of UAS imagery for wildlife 

surveys. They also observed that tree-species identification was possible due to the high 

resolution imagery’s ability to capture canopy, fruit, and flower features. Garzon‐Lopez et al. 

(2012) used high-resolution aerial photography to map tropical forest canopy tree species in 

Panama, and point towards UAS as a viable platform from which to obtain like data. Getzin 

et al. (2012) developed high-resolution orthophotos (7 cm GSD) from fixed-wing UAS 

imagery, using the data to enable detection and segmentation of small canopy gaps in 

temperate forest. These data were subsequently used to estimate understory floristic 

biodiversity. They suggest that canopy gap analysis from UAS can also be used in 

neotropical rainforests, since they impact plant composition due to correlation with 

microclimatalogical effects and ecological processes, and encourage future work therein. 

Further studies of gap pattern analyses in forests from UAS imagery (Getzin et al., 2014) 

showed that fine-scale gaps measurable in UAS data made up the majority of gaps in a 

temperate forest study site, and again point towards tropical forest biodiversity applications 

since understory vegetation in these environments are highly susceptible to light 

availability. Zahawi et al. (2015) created three-dimensional models of canopy in Costa Rica 

using imagery taken from an inexpensive (~$1,500) VTOL UAS. Canopy structure 

measurements extracted from the models (height, openness, roughness) were then used as 

predictors of frugivorous bird abundance. They found that UAS-derived point clouds were 

comparable to results from manned LiDAR measurements. Paneque-Gálvez et al. (2014) 

explored the use of small UAS for community-based forest monitoring, with potential benefit 

to biodiversity conservation in tropical forests. It is expected that UAS will find increased 

uses in biodiversity monitoring in tropical forests due to the unique fine-scale spatial and 

temporal data they offer, their versatility in tropical environments compared to conventional 

methods, and their relative affordability. This is especially likely since the hardware and 

associated algorithms will likely become smaller and more efficient.  

 

5.2.4  Measurement of Tropical Forest Biodiversity using Airborne 

Hyperspectral Data 

5.2.4.1 Overview 

Airborne hyperspectral data shows great promise in mapping and understanding patterns of 

tropical forest biodiversity because of its high spatial resolution and high spectral resolution. 

Much recent work has shown that airborne hyperspectral can directly map species, 

functional group variation (e.g. lianas vs. trees), functional traits, and genetic variation. In 

addition to direct mapping of species and species properties, spectral variation can 

potentially be used as a proxy of diversity measures locally (alpha) and across the 

landscape (beta). However, in tropical forests, not all tree species can be identified, nor can 

animal diversity be directly measured. Hyperspectral data can be indirectly linked to 

diversity via understanding habitat characteristics linked to animal and plant biodiversity 

and habitat mapping.  

5.2.4.2 Detection and Mapping of Tree Species 

The remote detection and mapping of individual tree species (operational species mapping) 

in the tropics has been a driver of advances in tropical remote sensing. While great progress 

has been made in the understanding of the spectral uniqueness of tropical species, 

operational species mapping is still a major challenge. The key to separation of individual 
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species with remote hyperspectral data is that spectral variation between species are 

greater than spectral variation within a species. At the leaf-level, these spectral patterns are 

dominated by variation in leaf biological and chemical compounds, including element and 

pigment composition, water content, and leaf thickness. Many studies have explored the 

uniqueness of species leaf spectra, with the conclusion that some species are unique and 

therefore separable, while other species are not. These studies have been done for a 

handful of tropical tree species in Costa Rica (Castro-Esau et al. 2006, Zhang et al. 2006, 

Clark and Roberts 2012), in the Peruvian Andes and Amazon regions (Asner et al. 2014), 

and tropical wetland species in Jamaica (Prospere et al. 2014). While leaf-level separability 

can help inform the degree to which a species has a unique spectral signature, airborne 

hyperspectral data captures variation in crown properties, in addition to leaf chemical and 

biological properties. Factors such as leaf density, leaf angle, arrangement, and clumping, in 

addition to the amount of exposed wood all affect a species’ spectral signature. Variation in 

crown properties may aid in spectral separability of species, driven by differences in 

reflectance of bark spectra (Clark and Roberts 2012), or other unique canopy traits such as 

leaf density, angle distribution, crown shape, and shading (Zhang et al. 2006). In a 

foundational paper for tropical tree species mapping, Clark et al. (2005) performed an 

automated species classification on crown spectra of seven emergent tropical tree species. 

Their results, which were further highlighted by Zhang et al. (2006) supported the need to 

consider the differences among crowns within a species. Despite advanced methods to 

suppress within-species variability (e.g+. Wavelet analysis), there are still some species 

that show little separability. 

There are very few examples of the automated creation of a full-species map of a forested 

tropical landscape with an airborne hyperspectral image. The primary challenge of 

operational species mapping of a diversity canopy is inadequate field data of all species and 

automated classification algorithms to characterize the variability within and among species. 

This is an issue of confronting the inherent uniqueness, or lack thereof, in canopy spectra 

among a high number of species, in addition to a challenge in generating a sufficiently large 

set of data to build automated classification algorithms (Baldeck and Asner 2014a). One of 

the only tropical locations where a full species map of crowns has been develop is Hawaii, 

where 17 species were mapped with 73% accuracy (Féret and Asner 2012a). While mapping 

all species in a tropical forest is perhaps an infeasible goal, separating species of interest 

from a background of unknown species is also a large area of development and has been 

done successfully in Hawaii (Féret and Asner 2012b), and a temperate savanna ecosystem 

(Baldeck and Asner 2014b). The key to target species mapping is to ensure that the species 

being mapped have ecological relevance, and not just are those species that are spectrally 

unique, such as Dipterix panamensis in Costa Rica (Clark et al. 2005). 

A second challenge involves the segmentation of a digital image into units that represent 

individual tree crown canopies. Generation of training data often involves manual 

segmentation of images (Clark et al. 2005, Féret and Asner 2012b). However, applying an 

automated classification also requires that the pixels in the image are divided into discrete 

units that represent a tree crown. The automated image classification is then applied to an 

entire crown unit, rather than individual pixels. Work in non-tropical ecosystems have used 

structural information from LiDAR data (light detection and ranging), which can help 

successfully resolve individual tree crowns (Strîmbu and Strîmbu 2015). Combined 

hyperspectral and LiDAR imaging systems, such as the platform used by the Carnegie 

Airborne Observatory (Asner et al. 2012), provide spectral data alongside canopy structural 

data. In tropical forests, where the canopy is more uniform relative to conifer forests or 

open savannas, the incorporation of spectral data with structural data may aid in automated 

crown delineation (Tochon et al. 2015). While often the focus of species mapping in the 

tropics, hyperspectral species applications are not limited to detection of individual tree 
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species. Moderate resolution hyperspectral images (10-30 m pixel size) allow for the 

detection and mapping of single-species forest types, such as a tropical plantation (Fagan et 

al. 2015) or mangrove ecosystem (Kamal and Phinn 2011).  

While the airborne data is available, the field-validated data and computer models are not 

yet at a place to achieve automated species mapping of a diverse topical forest canopy. To 

detect and map many (>10) individual species, other data forms may be necessary. These 

can include LiDAR data collected at the same time to get tree height and crown structure 

(Féret and Asner 2012b, Colgan et al. 2012), use of ancillary data of leaf and crown 

characteristics (Asner and Martin 2009), and high temporal imagery to look at phenology 

(Hesketh and Sánchez-Azofeifa 2012, Somers and Asner 2013). While operational species 

mapping in the species-rich tropics is still not achievable, great efforts have been made in 

recent years to understand other types of canopy diversity, primarily along the lines of foliar 

chemical and functional diversity. 

5.2.4.3 Detection and mapping of other types of diversity characteristics (life 

forms, functional diversity, genetic diversity) 

Understanding and predicting changes in an ecosystem may be best done by understanding 

the spatial and temporal patterns of plant functions, often grouping species into plant 

functional types. In tropical systems, remote mapping of plant functional types is 

advantageous because it reduces the high number of species into groups that have meaning 

for ecosystem dynamics and community assembly. The distinction between lianas and 

canopy tree species is one example of how remote sensing can be used to detect and map 

plant functional groups. Because of their increasing presence in neotropical tropical forests 

due to changes in climate conditions (Wright et al. 2004), remotely detecting the abundance 

and distribution of lianas could be useful to understanding ecosystem dynamics. It has been 

shown that in tropical dry ecosystems, leaves of liana species have higher water content 

and thinner leaves than their co-occurring tree species (Castro-Esau et al. 2004, Sánchez-

Azofeifa et al. 2009, Ball et al. 2015). These differences are detected in the spectral 

reflectance of individual leaves (Castro-Esau et al. 2004, Kalacska et al. 2007), canopy 

spectra (Sánchez-Azofeifa and Castro-Esau 2006), and canopy spectra from airborne 

images (Kalacska et al. 2007). 

In recent years, there has been a large effort to map functional traits of vegetation and tree 

canopies of tropical forests to understand how these ecosystems are changing (Asner et al. 

2015). The common functional traits that are relevant to remote sensing applications foliar 

chemical and pigment concentrations, leaf dry matter and surface area (as Leaf Mass per 

Area or Specific Leaf Area, and leaf water content (Asner 2015). Relationships between 

functional diversity and spectral reflectance have been examined across tropical dry forest 

succession (Alvarez-Añorve et al. 2012), and in Amazon to Andean tropical forests (Asner et 

al. 2014). 

Genetic diversity of tropical forests is also important. It was found that airborne 

hyerpsectral data (AVIRIS) can distinguish geonotypes of a highly-clonal temperate species 

(Populus tremuloides). While genotype detection may be infeasible for a species-rich 

tropical forest, it could play an important role in understanding diversity of monospecific 

forests (Hart 1990).  

5.2.4.4 Mapping community species richness and diversity measures 

In addition to discriminating and mapping individual tree species, airborne hyperspectral 

data has been successfully used to map local tree diversity (alpha diversity) as well as 

landscape turnover in tree species composition (beta diversity). The high spatial resolution 

of airborne data is advantageous because it captures the between-crown heterogeneity that 
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should increase with higher diversity levels (see spectral diversity hypothesis below). High 

spectral resolution is advantageous because the small spectral bands and full spectrum 

coverage are more likely to pick up small chemical and compositional differences among 

tree species. 

Many methods of detecting and mapping species diversity are purely statistical. Techniques 

such as Partial Least Squares Regression PLSR (Harris et al. 2015, Schmidtlein et al. 2007, 

2012), nearest neighbor similarity (Thessler et al. 2005) or random forests (Laurin et al. 

2014) are used develop relationships between hyperspectral data and floristic gradients 

based on species or plant functional type gradients, which are then predict continuous 

trends in floristic gradients and biodiversity.  

Others methods are based on theoretical relationships between spectral reflectance and 

diversity. Vegetation indices such as Normalized Difference Vegetation Index (NDVI) have 

been used, mostly with satellite and multi-spectral sensors, to map diversity (Gillespie et al. 

2005; 2009; Hernández-Stefanoni et al. 2012) based on the hypothesis that higher 

productivity is associated with greater diversity at least locally (Chisholm et al. 2012) which 

is the scale at which airborne systems operate. However, the main theoretical model applied 

to mapping species diversity for high spatial and spectral resolution images is the Spectral 

Variation Hypothesis (Palmer 2002; Rocchini et al. 2004, 2007, 2010, 2015; Medina et al. 

2013) that posits that greater heterogeneity in pixel spectral values is correlated with 

greater heterogeneity in species composition. For alpha diversity, this means that areas 

with greater local diversity will have greater local spectral variation among pixels. For beta 

diversity, this means that two locations with few shared species (low species similarity) will 

have low spectral similarity.  

Alternatively, based on the success of discriminating individual crowns mentioned 

previously, recent work has shown that a more direct calculation of species diversity using 

airborne hyperspectral data is possible. In these cases, species locations in an image are 

mapped using either supervised or unsupervised methods (Baldeck and Asner 2013; Feret 

and Asner 2014), then alpha and beta diversities measures are calculated from the pixel or 

crown representations of species locations. 

Limitations to mapping biodiversity measures using airborne hyperspectral data include the 

requirement of field measurements of alpha or beta diversity, which are extremely time 

consuming in high diversity tropical forests. Using proxy taxa, such as ferns, instead of a 

complete inventory, has been used in some cases (Thessler et al. 2005). These methods do 

not address animal diversity, which cannot be directly detected from hyperspectral data, 

and must use indirect methods described in the following paragraphs. Finally, there have 

been no reports of how well these methods work in detecting changes in biodiversity 

through time. These types of studies will be an important test of what degree the 

hyperspectral data detects plant species themselves, or underlying environmental gradients. 

5.2.4.5 Detection of biodiversity stressors from hyperspectral data 

Hyperspectral imagery can predict the distribution of animals and plants that may not be 

directly detectable in aerial imagery by measuring fine-scale changes in habitat structure 

(Ghiyamat and Shafri 2010). One approach is to correlate spectral variability with 

biodiversity (Rocchini et al. 2010), assuming that spectral variability indicates diversity of 

canopy traits that translate into species richness (Carlson et al. 2007) or that increased 

spectral variability represents increased habitat heterogeneity that can host a greater 

number of species than homogenous habitats (Leutner et al. 2012). Another approach is to 

use hyperspectral data to produce a map of habitat suitability for the organisms of interest 

and then apply a species distribution model to the classified habitat (Eldegard et al. 2014). 
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The latter approach may be particularly useful for cryptic plants and animals that are not 

directly detectable from aerial images. For example, high resolution aerial imagery can be 

applied to predict the distribution of coral-reef associated fishes (Simon J. Pittman and 

Anders Knudby 2014). Both approaches have caveats. The relationship between spectral 

diversity and canopy trait diversity may be complex and mediated by other sources of 

variability in remote sensors (Rocchini et al. 2010). Relating habitat heterogeneity to 

species abundance data via species distribution models is still an active topic of research in 

ecology (Merow et al. 2014), and presents challenges that are independent of the quality of 

habitat data from remote sensing. These challenges include accounting for imperfect 

detection (Lahoz-Monfort et al. 2014) and spatial autocorrelation in abundance that is 

unrelated to habitat quality (Crase et al. 2014). 

Hyperspectral data collected from aerial platforms can measure habitat degradation related 

to biodiversity loss. Invasive plant species represent a serious threat to native plant 

biodiversity (Pyšek et al. 2012) and can be detected using hyperspectral data (Ustin et al. 

2002, Underwood et al. 2003, He et al. 2011). For example, hyperspectral data in 

conjunction with LiDAR data was used to detect invasive tree species in a Hawaiian 

rainforest with <7% error rates in detection at spatial scales of ~7 m2 (Asner et al. 2008b) 

and to show that, in Hawaii, invasive plants displace native species and fundamentally alter 

forest structure (Asner et al. 2008a). Hyperspectral imagery can also measure degradation 

in habitat structure, including soil degradation (Shrestha et al. 2005, Townsend et al. 2008) 

and fire damage (Robichaud et al. 2007). Because hyperspectral imagery reflects canopy 

chemical composition, plant stress that causes changes in leaf traits is also detectable with 

this data source. Plant stress related to pathogen damage can be measured in single species 

plantations (Delalieux et al. 2009), including oil palms (Shafri and Hamdan 2009). At the 

community level, changes in forest structure related to insect damage can also be measured 

using hyperspectral data (Pontius et al. 2008). Because herbivores and pathogens play 

critical roles in maintaining tropical forest biodiversity (Bagchi et al. 2010, Comita et al. 

2010), it is anticipated that the ability to measure effects of these organisms in tree 

canopies and over large scales will provide an indispensable tool for understanding and 

managing tropical biodiversity. 

5.2.4.6 Collection of hyperspectral images 

Airborne hyperspectral sensors are typically mounted on airplanes, but sensors are being 

developed that can also be mounted on Unmanned Aerial Vehicles (UAVs). A major 

limitation of airborne hyperspectral images is their cost and availability. Airborne 

hyperspectral data is not routinely collected by government agencies as is satellite data. To 

operate one’s own hyperspectral sensor is a significant investment, including purchasing a 

hyperspectral sensor (tens to hundreds of thousands of dollars), owning or renting an 

aircraft or drone, and learning to operate the sensor and platform. The cost of the sensor is 

affected by the spectral range that it covers. Sensors that cover the visible (VIS) and Near 

Infrared (NIR) only are less expensive than sensors that cover the VIS, NIR and short wave 

infrared (SWIR). Sensors with just VIS/NIR may be equally suited for measuring vegetation 

density, but the additional information in the SWIR bands can be important for analyzing 

biodiversity in highly diverse tropical forests. Some hyperspectral sensors used in 

hyperspectral analyses of tropical forest biodiversity in recent years include: Carnegie 

Airborne Observatory (Carnegie Institution-US; Asner et al. 2012); AISA Eagle (Specim-

Finland; Laurin et al. 2014); Hymap (HyVista-Australia; HySpex VNIR-1600-Norway; Fagan 

et al. 2014) 

5.2.4.7 Image processing 

Analyzing hyperspectral data also poses some challenges. The images are much larger than 

multispectral data because each pixel contains so many values, thus processing can take a 
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long time. There is a high degree of correlation between bands in hyperspectral data, such 

that using data reduction techniques that remove noise and redundancy, and target areas of 

the spectra relevant to ecological analysis, are often used. These include Miminum Noise 

Fraction (Underwood et al. 2003); band indices targeted at particular vegetation features 

such as water content or plant health (Roberts et al. 2011); or spectral mixture analysis 

(Gillespie and Adams 2006). Standard commercial remote sensing software packages, 

including ENVI, ERDAS Imagine, and MATLAB have many analysis tools specific to 

hyperspectral data, but are expensive. Free software that is designed specifically to handle 

hyperspectral images include: Python Hyperspectral Toolbox, Gerbil, Opticks, TNTmips Free 

and packages in R. 

 

5.2.5  Airborne Active Microwave Remote sensing 

5.2.5.1 Introduction 

Airborne active microwave remote sensing, or more colloquially referred to as radar remote 

sensing, has been an active field of research since the early 1990’s, with most technological 

development focused on the interpretation of synthetic aperture radar (SAR). Applications 

have encompassed land cover classification and various forest attributes such as canopy 

height, aboveground biomass, phenology, inundation, and forest disturbance. Before 

expanding upon the advantages and challenges encompassed with radar remote sensing, it 

is useful to review some key concepts relating to active microwave remote sensing of 

vegetation. Backscatter is the reflection of the transmitted microwaves, and brightness 

refers to the intensity of the backscatter. The backscatter response from vegetation differs 

across the radar bands. Generally, the longer wavelengths penetrate deeper into vegetated 

surfaces and are less affected by clouds or other atmospheric effects. For example, the P-

band (lambda: 30-100 cm) can penetrate through canopies, woody biomass, and into soil, 

although it can reflect from tree trunks. L-band (lambda: 15-30 cm) can also penetrate 

canopies and into the biomass, but will register less signal from tree trunks. C-band 

(lambda: 3.75-7.5 cm) can penetrate partially into the canopy and even detect fine branch 

structure from deciduous trees, while the X-band (lambda: 2.4-3.75 cm) can only penetrate 

the canopy surface (Jones and Vaughan, 2010). 

Radar remote sensing over forests has most often been utilized to generate polarimetric 

SAR (PolSAR) and interferometric SAR (InSAR) imagery to characterize canopy height, 

biomass, or deformation relating to forest disturbance. Unlike multi-spectral imagery from 

optical remote sensing, radar remote sensing is used to generate “multi-specular” images 

relating to the different polarization responses of the radar backscatter. The naming 

designation of polarized backscatter is described with polarization from the transmitter first, 

followed by the polarization received. For instance, if the transmitter emits horizontal 

polarized (H) waves, and the receiver is tuned to vertical (V) waves, the resulting 

backscatter is considered HV. A full polarimetric sensor will generate HH, HV, VH, and VV 

signals. The interaction of the microwave polarity with the surface (and atmosphere 

depending on the band) determines the degree to which the backscatter is depolarized. A 

smooth surface may reflect a high degree of the incoming polarity, whereas a Lambertian 

surface such as forest canopy will act to cross-polarize the incoming microwaves (HV and 

VH backscatter) (Jensen 2000).  

Interferograms are generated from at least two SAR images from repeat passes or 

generated simultaneously. For example, the Shuttle Radar Topography Mission mapped the 

Earth’s topography with two C-band radar antenna separated by a 60 m mast (Farr et al. 

2007). While this design could produce high precision interferograms, the design is 
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impractical for most airborne platforms because the distance between antennas was 

invariant. The Jet Propulsion Laboratory has developed a new platform, UAVSAR, that 

automates the flight path of the plane to be within 10 m of the prespecified route (Rosen et 

al. 2006). The exceptionally high spatial accuracy of multiple flight paths allows for 

interferograms to be generated that can map the surface, or that can show temporal change 

in structure when more than one flight has been made. 

5.2.5.2 Advantages 

There are distinct advantages that are unique to active radar remote sensing, as compared 

to optical airborne systems. Perhaps most importantly, radar systems can gather data 

irrespective of the time of day, and many radar bands useful to the remote sensing of 

vegetation are relatively less-affected by cloud cover or precipitation. Airborne SAR systems 

can be flown at higher altitude and collect data over a larger range of angle of incidence 

than corresponding optical remote sensing. This allows for a swath width that can be 

roughly ten times larger than that of small foot-print LiDAR (Balzter et al 2007). For 

instance, NASA JPL’s UAVSAR polarimetric L-band has a swath range of 16 km (Rosen et al. 

2006), in comparison to the Carnegie Airborne Observatory LiDAR swath width of 1.5 km 

(Asner et al. 2013).  

Next, the longer microwave bands can infer environmental properties that are generally 

indistinguishable for either active or passive optical remote sensing. The P and L bands can 

indicate the number of stems in a forest because trees greater than a given diameter will 

act as corner reflectors and emit a higher brightness. P and L bands can be used to infer soil 

moisture, or if there has been flooding that has been obscured from the canopy (Hess et al. 

1995). Recently developed algorithms have even been able to simultaneously estimate 

tropical forest soil moisture with aboveground biomass with less than 4% and 15% relative 

error, respectively (Truong-Loi et al. 2015). Airborne radar may present another pertinent 

application relating to the degradation of forest, considering the expansion of petroleum 

industries into tropical forest regions (ex: Finer et al. 2008). SAR has been often been used 

with great effect to identify oil spills because the oil acts as a specular reflector on the water 

which reflects more diffusely. Research with UAVSAR data has indicated probable oil spills in 

areas of complex vegetation and sediment such as the Louisiana salt marshes north of the 

Deep Water Horizon oil spill (Ramsey et al. 2011).  

5.2.5.3 Challenges and Future Opportunities 

The processing, analysis, and interpretation required of raw radar data to extract useful 

environmental information are undoubtedly non-trivial. Even after imagery has been 

orthorectified, the end user must remain aware of the caveats associated with radar. For 

instance, airborne radar systems are most often side-looking so topography can create 

“shadowing” on surface areas with aspects opposite to that of the plane’s flight path. Next, 

the accuracy for some environmental metrics, such as canopy height, is generally less than 

that of LiDAR systems. Polarized L-band radar exhibited much higher error than LiDAR when 

estimating aboveground biomass with linear regression models at biomass ranges of <30 

Mg ha-1, but the size of this error decreased with increasing biomass per hectare (Tanase et 

al 2014). Even in a relatively homogenous managed pine plantation, L-band and X-band 

InSAR exhibited 50-100% higher RMSE than LiDAR derived estimates of stand height 

(Balzter et al. 2006). One of the largest hurdles for radar remote sensing to overcome for 

the past two decades has been that radar backscatter saturates with biomass, especially 

beyond 100 Mg ha-1 for even the P-band, while shorter wavelengths saturate at 

considerably lower levels of biomass (Imhoff, 1995). More recent analysis has used multiple 

polarimetric bands with InSAR data to begin overcoming this limitation, especially with 

regards to high biomass tropical forests (ex: Saatchi et al. 2011).  
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Various airborne SAR campaigns have been flown over the last two decades (eg: UAVSAR, 

TropiSAR), although the enthusiasm for biomass mapping via radar has perhaps been 

dampened because of the accelerated development of LiDAR capabilities to more accurately 

estimate canopy height. Despite the challenges of working with radar data, a number of 

new multi-sensor data-fusion approaches suggest a bright future for radar remote sensing, 

where SAR data is used in conjunction with LiDAR or passive optical sensors to improve the 

accuracy of forest biomass estimation (ex: Treuhaft et al. 2004; Sun et al. 2011; Banskota 

et al. 2011).  
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5.3 TIME-SERIES ANALYSIS FOR FOREST COVER CHANGE 

Johannes Reiche, Wageningen University, The Netherlands 

Ben DeVries, University of Maryland, United States 

 

5.3.1 Background 

During the recent decade, forest monitoring methods using satellite image time series have 

been rapidly evolving. Many studies have demonstrated the utility of time series of medium 

resolution optical data for mapping and quantifying forest change ([1]–[5], and others). The 

opening of the Landsat archive to the global public in 2008 is arguably the most important 

factor in the development of these novel approaches, as this decision effectively removed 

substantial cost barriers faced by many users. Beginning in 2010, an effort to consolidate all 

historical Landsat imagery into one central repository has further facilitated historical forest 

change mapping and quantification [6]. This opening and consolidation of all Landsat data, 

paired with the centralized pre-processing and delivery of surface reflectance and cloud 

mask products [7], [8], has effectively brought about a paradigm shift in satellite-based 

forest monitoring. 

While coarse resolution satellite data such as MODIS remain important resources for 

monitoring global dynamics, the availability of Landsat data to the public has triggered a 

shift from coarse resolution mapping of change to medium spatial resolution (30m), 

allowing for the monitoring at spatial scales often demanded by many ecological applications 

[9]. At this spatial resolution, methods have shifted from conventional bi-temporal change 

detection approaches [10], [11] to time series analysis [12], [13]. While many methods in 

which two images are compared have been shown to be robust, the timing of change is 

frequently misrepresented using bi-temporal change detection methods. Landsat time 

series, on the other hand, provide a synoptic view of forest changes in both time and space, 

allowing for wall-to-wall mapping of annual forest change [2] or near real-time forest 

change alerts [14]. 

Operational forest monitoring for such purposes as the Reducing Emissions from 

Deforestation and Degradation (REDD+) mechanism increasingly relies on annual Landsat 

time series data [4], [15], [16]. As biodiversity moves into the range of forest monitoring 

objectives, including theintegration of Essential Biodiversity Variables (EBV) into existing 

monitoring frameworks [17], [18], the question of whether such time series approaches 

adequately address forest monitoring objectives needs to be critically addressed. A recent 

study comparing bi-temporal, annual or “all-available” Landsat time series, for example, has 

suggested that only by using all available observations can gradual land surface changes be 

adequately captured [19], an insight with likely implications on biodiversity monitoring in 

forest ecosystems. Despite its limitations resulting from the spatial resolution of Landsat 

data (e.g. in dry tropical forests, where fine resolution imagery are required to quantify and 

forest cover change), the temporal depth and expected continuity of the Landsat archive 

positions it as one of the best tools for biodiversity monitoring in forest ecosystems. 
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Table 5.3.1.1: Selection of time series analysis methods for forest monitoring 

LTS 

type 

Method / 

Algorithm 

Description References Availability 

Annual 

imagery 

or 

composit

es 

Vegetation 

Change Tracker 

(VCT) 

Forest disturbance and 

regrowth monitoring using 

integrated forest z-scores 

(IFZ) 

[3] N/A 

LandTrendR Analysis and segmentation 

of temporal trajectories to 

describe forest disturbance, 

regrowth and trends 

[20] http://landtr

endr.forestry

.oregonstate

.edu/content

/landtrendr-

code-0  

National to 

global scale 

annual forest 

gain/loss 

Bagged decision tree 

classification using temporal 

variables 

[2], [15], 

[21] 

N/A 

Best Available 

Pixel (BAP) 

methods 

Generation of annual BAP 

image composite time series 

based on criteria related to 

day of year, proximity to 

clouds, etc. 

[22] N/A 

All 

available 

data 

Continuous 

Change 

Detection and 

Classification 

(CCDC) 

Dynamic season-trend 

model fitting, break 

detection and dynamic land 

cover classification using all 

available data 

[23][24] https://githu

b.com/prs02

1/ccdc  

Breaks For 

Additive 

Season and 

Trend (BFAST) 

Monitor 

Season-trend model fitting, 

break detection and 

monitoring using structural 

change monitoring methods 

and all available data 

[25]–[28] http://github

.com/dutri00

1/bfastSpati

al 

 

http://bfast.r

-forge.r-

project.org/ 

Forest 

probability time 

series 

Time series of forest 

probability estimates using 

all available data 

[29] N/A 

 

Two current aspects of forest change detection methods relevant to biodiversity monitoring 

using Landsat time series are described in this chapter. First, the use of all available Landsat 

data to understand forest dynamics beyond abrupt land cover changes is described in the 

context of post-disturbance regrowth (Chapter 1.1.1.2). Here, a statistical data-driven 

method is proposed to understand the fate of forests following disturbances. Second, 

combining time series of different sensors to compensate for the limitation of single sensor 

monitoring efforts is described in Chapter 1.1.1.3. Such data gaps can occur in optical time 

series due to persistent cloud cover in the tropics or unexpected failures experienced by 

certain systems (e.g. ALOS failure in 2011), and the integration of SAR with optical time 

series is proposed to address this limitation. 

http://landtrendr.forestry.oregonstate.edu/content/landtrendr-code-0
http://landtrendr.forestry.oregonstate.edu/content/landtrendr-code-0
http://landtrendr.forestry.oregonstate.edu/content/landtrendr-code-0
http://landtrendr.forestry.oregonstate.edu/content/landtrendr-code-0
http://landtrendr.forestry.oregonstate.edu/content/landtrendr-code-0
http://landtrendr.forestry.oregonstate.edu/content/landtrendr-code-0
https://github.com/prs021/ccdc
https://github.com/prs021/ccdc
https://github.com/prs021/ccdc
http://github.com/dutri001/bfastSpatial
http://github.com/dutri001/bfastSpatial
http://github.com/dutri001/bfastSpatial
http://github.com/dutri001/bfastSpatial
http://bfast.r-forge.r-project.org/
http://bfast.r-forge.r-project.org/
http://bfast.r-forge.r-project.org/
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5.3.1.1 Example I: Disturbance-Regrowth Monitoring using Landsat Time Series 

Objective statistical methods to monitor disturbances using dense remote sensing time 

series have recently been demonstrated using the Breaks For Additive Season and Trend 

(BFAST) Monitor method [28]. Recent research has demonstrated this method over a 

number of tropical forest sites, allowing for the monitoring of small-scale agriculture-driven 

disturbances in sub-Saharan Africa [25], disturbance monitoring in the dry tropics [26], or 

disturbance monitoring in data-limited areas [27]. These studies demonstrate the utility of 

BFAST Monitor as a robust data-driven tool for objective monitoring of forest disturbances, 

despite the challenges associated with forest monitoring in moist tropical regions. 

The ability to monitor forest dynamics following a disturbance is critical to understanding 

impacts on biodiversity and opportunities for conservation and mitigation activities. To date, 

few methods have been demonstrated that can measure post-disturbance forest regrowth 

using dense Landsat time series. In a recent study, DeVries et al. (2015) demonstrate an 

approach for monitoring post-disturbance forest regrowth using statistical principles similar 

to those behind the BFAST Monitor method [30]. In short, this method monitors the moving 

sums (MOSUM) of residuals derived from a historical stable forest model. The moment that 

the MOSUM values return to a ‘stable’ state based on this historical period is labelled as 

‘regrowth’. Figure 5.3.1.1.1 demonstrates the use of MOSUM for monitoring post-

disturbance growth for a time series of one Landsat pixel. This example is based on a time 

series of the Normalized Difference Moisture Index (NDMI) from Landsat 5 and Landsat 7, 

where NDMI is computed as (Band4 – Band5) / (Band4 + Band5). In this method, a stable 

history devoid of disturbances or significant noise is first identified. Then, a season model is 

fit to the stable history period and projected into the monitoring period. Just as in other 

BFAST-related methods [28], [31], the approach is flexible with regards to the type of 

model fit to the history period. After projecting the model, the MOSUM is computed, based 

on the residuals (expected minus actual observations) for every time point in the monitoring 

period. The moment after the initial disturbance at which the MOSUM crosses below the 

critical boundary, computed based on a statistical significance level, is interpreted as 

regrowth. 
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Figure 5.3.1.1.1: Demonstration of the use of a Moving Sum (MOSUM) parameter to 

monitor post-disturbance regrowth over a single Landsat pixel. The normalized difference 

moisture index (NDMI ) is used as input data (top panel) in this example. The blue line in 

the top panel represents the model fitted to the history period and forecasted into the 

monitoring period. 

A demonstration of this automated regrowth monitoring method over a study site in Madre 

de Dios, Peru showed that the algorithm can detect regrowth events with very high user’s 

accuracy (i.e. low false positives), but with relatively lower producer’s accuracy (i.e. higher 

false negatives). In other words, the method rarely confused forest regrowth with other 

phenomenon, but frequently missed actual regrowth events. The latter observation was 

found to be due to timing of the disturbances and limitations to the Landsat time series 

themselves: earlier disturbance events allowed for better monitoring of regrowth simply 

because there were more data in the time series following the event, whereas late 

disturbance events had fewer observations following them from which regrowth could be 

determined with certainty. 

This method is freely available as the ‘regrowth’ package in R 

(http://github.com/bendv/rgrowth). 

 

5.3.1.2 Example II: Combining Landsat and SAR time series for monitoring forest 

cover loss 

The main limitation of optical-based time series methods in tropical regions in general is the 

restricted data availability due to frequent cloud cover resulting in sparsely sampled time 

series [32], [33]. In some regions, such as parts of the Amazon Basin or Central Africa, 

persistent cloud cover inhibits full optical coverage from Landsat-like sensors even when 

compositing is performed over a period of one to three years [32], [15], [34]. This results in 

late detection of changes and prohibits intra-annual monitoring. Efforts combining optical 

and Synthetic Aperture Radar (SAR) time series imagery have demonstrated their potential 

http://github.com/bendv/rgrowth
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to improve forest cover loss monitoring in tropical regions, where cloud cover limits time 

series approaches relying on optical data only [27], [35]–[37].  

For combining optical and SAR time series Reiche, Verbesselt, et al., (2015) recently 

introduced the pixel-based Multi-sensor Time series correlation and Fusion approach 

(MulTiFuse). Figure 5.3.1.2.1 illustrates the main steps of applying the MulTiFuse approach 

to fuse optical and SAR image time series. The MulTiFuse approach first models the 

relationship of two overlapping time series, using an optimized weighted correlation. The 

resulting optimized regression model is used to predict and fuse the two time series. A time 

series analysis method can subsequently be used to detect forest cover loss within the fused 

time series.  

 

 

Figure 5.3.1.2.1: Schematic overview of MulTiFuse approach to fuse optical and SAR 

image time series. 

 

The MulTiFuse approach was applied to fuse Landsat NDVI (~6.5 observations/year) and 

ALOS PALSAR backscatter (~2 observations/year) time series acquired at a managed 

evergreen tropical forest site in Fiji. To detect the forest cover loss due to managed logging 

activities, BFAST Monitor [28] was used for time series analysis. Three-monthly reference 

data (4 time steps per year) was utilized to validate and assess the spatial accuracy and the 

temporal accuracy (timing of the change) (Figure 5.3.1.2.2). The temporal accuracy is 

measured as the mean time lag of detected changes. For the fused Landsat-PALSAR time 

series the overall accuracy was 95.5% with a 1.59 month mean time lag of detected 

changes. The MulTiFuse approach showed good results when dealing with abrupt changes 

(deforestation), but needs to be tested and evolved for gradual changes such as forest 

degradation and when dealing with seasonal tropical forest.  

The MulTiFuse approach is freely available as the ‘multifuse’ package in R 

(http://github.com/jreiche/multifuse). 

 

http://github.com/jreiche/multifuse
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Figure 5.3.1.2.2: Map results showing detected deforestation between 01/2008 – 09/2010 

for the fused Landsat-PALSAR case compared to the reference data for a subset of the 

managed evergreen tropical forest site in Fiji. The time stamp “2008.1” refers to the first 

quarterly period of 2008 (January – March).  
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6.1 INTRODUCTION 

Earth Observation (EO) refers to the direct and indirect measurement of the Earth’s surface 

that can be undertaken using satellites, aircraft, on the ground and underwater using active 

and passive sensors (O’Connor et al., 2015). EO provides a valuable source of information 

for biodiversity monitoring of tropical forests (chapter 2; Turner et al., 2003; Gillespie et al., 

2008; O’Connor et al., 2015), in particular from space-based platforms due to their 

extensive spatial and temporal coverage. With data from the new Copernicus Sentinel 

satellites now coming online and the planned Biomass mission of the European Space 

Agency (ESA), biodiversity monitoring could greatly benefit from these higher spatial and 

temporal resolution measurements.  

The Group on Earth Observations Biodiversity Observation Network (GEO BON) has 

proposed a set of 22 Essential Biodiversity Variables (EBVs) (Pereira et al., 2013a). These 

EBVs provide quantifiable measures that can be used to monitor targets, e.g. the Aichi 

biodiversity targets, or they can be employed within conservation monitoring and research 

more generally. O’Connor et al. (2015) have surveyed experts in EO and biodiversity in 

order to identify a subset of EBVs, referred to as RS-EBVs, which can be entirely or partially 

monitored by remote sensing (RS). O’Connor et al. (2015) have shown that these RS-EBVs 

can aid in the monitoring of 11 out of 20 Aichi targets.  

Although remote sensing has clear advantages for monitoring in terms of spatial and 

temporal coverage as mentioned previously, field level data are still needed to complement 

remote sensing if conservation measures are to be monitored in a meaningful way 

(Stephenson et al., 2015). From a remote sensing perspective, field level data are needed 

for calibration and validation of products derived from EO but also for those EBVs where 

remote sensing cannot be used for monitoring.  

To fill this information gap, the participation by community members in monitoring and 

science (Bonney et al., 2009b; Chandler et al. 2016b) shows considerable potential for 

helping to collect ground-based data, that together with analysis, could contribute to 

international environmental agendas (Danielsen et al., 2014c). Several important factors 

have led to a dramatic increase in citizen science projects as well as interest in greater 

leveraging of citizen science (Theobald et al., 2015). The recent creation of professional 

associations dedicated to the advancement of the field of citizen science is helping to 

develop best practices, standards and lessons learned that will improve both ends of the 

equation - namely valuable data collected and meaningful participant experience. For 

example, the Participatory Monitoring and Management Partnership 

(www.pmmpartenrship.com) has been created to promote the dialogue between 

communities involved in natural resource and biodiversity monitoring as well as to 

document and disseminate best practices in community-based monitoring. 

Another important advancement in citizen involvement has been driven by recent advances 

in technology and the proliferation of mobile devices, allowing more citizens to contribute to 

environmental monitoring and conservation at both local to global scales. Citizen science is 

now seen as being able to fill the perceived gap between an increased demand for 

monitoring and decreasing funding for professional staffing that traditionally performed in-

situ monitoring, for government natural resource agencies. Additionally, citizen science can 

help boost civic engagement with a promise of building social capital that can be used to 

better inform and support management and policy initiatives, and empower individuals and 

communities (Constantino et al., 2012; Crain et al., 2014). 

http://www.pmmpartenrship.com/
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There are many examples of successful citizen science biodiversity monitoring projects 

across multiple ecosystem types (e.g. see http://scistarter.com/; 

http://www.earthwatch.org) including tropical forests. Many of these projects are focused 

on species occurrence and phenology, including invasive species. They range from very 

intensive projects (www.earthwatch.org), which require considerable training and 

commitment on the part of citizens, to easy-to-use mobile applications (e.g. iNaturalist)), or 

Do-It-Yourself (DIY) kits that anyone can download and use. GEO BON is also currently 

developing a BON in a BOX toolkit to support development of biodiversity observation 

systems at the country level, including tools for citizen science. The first region for the BON 

in a BOX toolkit will be Latin America hosted by Instituto Humbodt and GEO BON.  

More recently, citizen science, in this case community-based forest monitoring, has been 

considered a viable approach in the framework of REDD+ (Reducing Emissions from 

Deforestation and Forest Degradation) for the monitoring of carbon (Danielsen et al., 2011, 

2014a) and many new schemes are starting (Danielsen et al., 2013). Integrating 

biodiversity monitoring within community-based forest monitoring initiatives could therefore 

provide a potential source of calibration and validation data for products derived from EO. 

See section 8 for synergies between biodiversity monitoring and REDD+. 

This chapter presents case studies of successful projects that have involved the community 

and citizen scientists in the monitoring of different biodiversity indicators and variables. We 

start with an overview of the various terms that can be found in the literature to denote the 

involvement of local people in monitoring activities including citizen science. This is followed 

by an assessment of the needs of the biodiversity community in terms of the variables of 

interest for monitoring and scientific research, the role of remote sensing in measuring 

these variables and what calibration and validation data are needed from ground-based 

measurements. The case studies serve to highlight what types of data are currently being 

collected by communities, how these relate to the key variables of interest and what gaps in 

ground-based monitoring exist. 

Although citizen and community-based monitoring have considerable potential in supporting 

data collection for EO, the creation and development of a citizen science program is not a 

trivial task. Attracting, training and maintaining sufficient numbers of citizen scientists to 

meet monitoring needs is a significant endeavour (Chandler et al., 2016). There are many 

examples of programs where the cost of running the programs outweighed the benefits in 

terms of data collected, and in terms of the quality of the experience for the participants - 

ultimately resulting in a lack of sustainability of the programs. One key outcome from 

reviews of programs to date is the need to find a balance between the data gathering needs 

for the monitoring programs with delivering tangible (direct) benefits to the community 

members participating and contributing their time and effort (Chandler et al., 2016; Shirk et 

al., 2012). Thus, the final part of this chapter addresses these types of issues by providing 

guidelines for setting up a community or citizen-based project for tropical biodiversity 

monitoring, drawing upon experiences from many different past and ongoing projects 

around the world. 

 

6.2 TERMINOLOGY 

The term citizen science is often conceived by its practitioners in the broadest sense - i.e. 

the participation by the non-scientific public in scientific research and monitoring; see the 

review of typologies in Bonney et al. (2009b), Wiggins and Crowston (2011) and Haklay 

http://scistarter.com/
http://scistarter.com/
http://www.earthwatch.org/
http://www.earthwatch.org/
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(2015). The bulk of current projects labelled as environmental “citizen science” occur in 

temperate and western countries where many if not most participants engage in these 

projects as a hobby or in service of their “community” (Haklay, 2015). In practice and for 

the purpose of this chapter, it is useful to differentiate community-based monitoring as a 

distinct subset of citizen science. In the tropics, much of the important monitoring engages 

local community members, where many participants are and remain active users of their 

natural environment (Danielsen et al., 2005a; Haklay, 2015). 

Evans and Guariguata (2008) have provided a meta-review of existing literature on 

participatory monitoring in tropical forest management as well as the lessons learned from 

these projects. Although many of these initiatives have been aimed at sustainable 

management of tropical forests rather than biodiversity monitoring, there are examples of 

where monitoring has included variables of interest to the biodiversity community (Ojha et 

al., 2003; Lawrence et al., 2006). Because of the importance of these works in considering 

how best to engage local communities in forest monitoring, we provide Table 6.2.1 which 

outlines the terminology that appears in Evans and Guariguata (2008) along with their 

original cited sources; we have expanded this to include community-based monitoring more 

generally and monitoring by citizen science programs. 

Table 6.2.1: Summary of terminology 

Term Definition Source 

Participatory monitoring The systematic collection of information 

at regular intervals for initial assessment 

and for the monitoring of change. This 

collection is undertaken by locals in a 

community who do not have 

professional training. The term is often 

used in the context of monitoring forests 

for their sustainable management but 

can be extended to other ecosystem 

services.  

Guijt (2007); 

Evans and 

Guariguata (2008). 

See also Wikipedia 

(2015) 

Locally-based monitoring This is similar to participatory 

monitoring but monitoring can also be 

undertaken by local staff from 

government authorities.  

Danielsen et al. 

(2005a) 

 

Collaborative monitoring Local monitoring that is embedded 

within resource management decision-

making and part of an iterative learning 

cycle. The monitoring processes are also 

heavily driven by the need to be locally 

relevant. 

Guijt (2007) 

Participatory Assessment, 

Monitoring and Evaluation 

of Biodiversity (PAMEB) 

Biodiversity monitoring, evaluation and 

assessment by non-specialists. Similar 

to the aims of many citizen science 

programs but with a specific emphasis 

on biodiversity. 

Lawrence and 

Ambrose-Oji 

(2001); Lawrence 

(2010) 

Joint monitoring or multi- Monitoring by local people together with Andrianadrasana et 
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Term Definition Source 

party monitoring local government authorities where the 

emphasis appears to be on enforcement. 

al. (2005); Bagby et 

al. (2003) 

Self-monitoring The monitoring of activities by local 

people which are related to natural 

resource use, e.g. hunting or the 

harvesting of timber. 

Noss et al. (2005); 

Constantino et al. 

(2008) 

Event monitoring The monitoring of events (e.g. fires, 

invasive species) by local people when 

they occur or as part of a census or 

other planned activity. 

Stuart-Hill et al. 

(2005) 

Community-based 

ecosystem monitoring 

Monitoring involving non-specialists that 

are organized by government or 

conservation organizations in developed 

countries. 

Whitelaw et al. 

(2003) 

Community-based 

monitoring 

Monitoring of environmental resources 

via the engagement of local 

communities to provide accountability, 

transparency, sustainability and 

inclusion in decision-making. Used also 

in the context of the monitoring of 

health programs and other public 

services. 

Constantino et al. 

(2008); 

Wikipedia (2013) 

Citizen science monitoring 

programs 

The involvement of citizens in scientific 

research from data collection 

(contributory) to analysis and design 

(collaborative) to co-creation, in which 

citizens are involved in all stages of the 

scientific process. Also referred to as 

public participation in scientific research. 

Bonney et al. 

(2009a, 2009b) 

 

 

For the sake of clarifying important differences in approaches, we will focus on two forms of 

engaging community members in the data collection needed for monitoring and field 

research - community-based monitoring and “citizen science”. For the purpose of this 

chapter, we use community-based monitoring to denote the involvement of local 

community members in the data collection process, whether for the purpose of sustainable 

resource management, biodiversity monitoring or greater involvement in decision-making at 

the local level. We distinguish this from citizen science monitoring, where participants 

participate in projects, often driven by external bodies, i.e. scientists, conservation bodies, 

etc., with participants both distant or local to the study area, often giving their time and 

resources by a shared passion for nature, or desire to help conserve nature in some way. It 

is important to state that there are many different approaches to citizen science, varying in 

the degrees to which participants lead, design or direct outcomes, and any generalisations 

will fail to capture the full variety of citizen science that exists. 
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A continuum exists in the degree of influence citizen science participants have in shaping 

the data collected, problem formulation, analysis and dissemination of results. Many 

community-based monitoring programs have some elements of being “co-created” or 

adapted to local circumstances (participatory sensing and civic/community science using 

Haklay (2015) terms), whereas many citizen science projects are “contributory” (sensu 

Bonney et al., 2009) where participants have little input to the creation of the programs or 

shaping of research or monitoring outcomes beyond data collection. Of course, there are 

many other kinds of important educational or social outcomes which both community-based 

monitoring and citizen science monitoring programs regularly achieve. In fact these 

“peripheral” or secondary benefits may outweigh any benefits derived from increased data 

gathering from the community’s perspective. See Funder et al. (2013) for a good example 

of where the heightened involvement by community members in monitoring their forests 

was deemed of very high value because it led to a greater demonstration of occupancy and 

sense of control over “their” lands. 

There will always be trade-offs between the information needs of the tropical biodiversity 

monitoring community and the needs of communities on the ground, so it is important to 

understand where the main data gaps are and how communities can also directly benefit 

from their involvement in data collection efforts.  

In the sections that follow, we will demonstrate that both community-based monitoring and 

citizen science monitoring projects can provide valuable data for the calibration and 

validation of EO-derived products.  

 

6.3 INFORMATION OF VALUE FOR BIODIVERSITY 
MONITORING IN TROPICAL FORESTS 

Table 6.3.1 presents the variables of interest for biodiversity monitoring, which include 

relevant Essential Biodiversity Classes (EBC) and EBVs as published previously by Pereira et 

al. (2013a) as well as other variables of interest to biodiversity monitoring. The table also 

summarizes how these variables are measured in-situ, what training is required for in-situ 

measurement by communities and citizens, and whether these variables can be measured 

using remote sensing, thereby serving as potential calibration and validation data. There are 

many different types of in-situ measurement technique listed in Table 6.3.1 including field 

observations/presence surveys for groups of species or single species; patrol records; 

transects; species lists; village group discussions; camera traps; hair traps; footprints 

protocols; mist-nets; pitfall traps; nested vegetation plots, among others. The reader is 

referred to field manuals (Buckland et al., 2004; Silvy, 2012; Magnusson et al., 2013) and a 

considerable literature on nested vegetation plots (Shmida, 1984; Stohlgren et al., 1999, 

1998, 1997, 1995) for more detailed explanations of these in-situ methods. See also 

chapters 4.2.2, 4.6.2, and 5.2.4 for more information on species mapping. See section 4.2 

for more information on in-situ data. 

Table 6.3.1 is shaded green when variables are observable by remote sensing and red when 

ground-based data are the only way to measure these variables. This shading has been 

informed by the survey of O’Connor et al. (2015) but is more focused on tropical 

biodiversity monitoring and is not linked to specific Aichi targets. This characterization 

indicates that four out of five EBCs can use remote sensing for monitoring all constituent 

EBVs while only the EBC Species Traits has some EBVs that require ground-based data 

exclusively.  
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6.4 CASE STUDIES OF COMMUNITY-BASED AND CITIZEN 
SCIENCE MONITORING  

This section provides a series of case studies from citizen science and community-based 

monitoring projects for biodiversity and/or forest management. These case studies were 

chosen based on direct knowledge of EarthWatch projects and other community-based 

monitoring initiatives in order to provide a good geographical representation. These case 

studies are not meant to be a comprehensive selection but rather they each bring different 

approaches and lessons learned to the table.  

Evans and Guariguata (2008) have provided an excellent review and resource of many 

community-based forest monitoring programs. The selection provided in Table 6.4.1 is 

complementary to Evans and Guariguata (2008) in that there are good examples of 

community-based forest monitoring programs but these are more up to date than the 

previous review. However, in contrast to Evans and Guariguata (2008), the emphasis of the 

case studies presented here is more on biodiversity monitoring rather than community-

based forest monitoring, and it also covers citizen science programs. These 14 cases are 

summarized in Table 6.4.1 and then outlined in more detail in the sections that follow. In 

particular the link is made between what EBCs are captured through in-situ monitoring 

across the diverse set of case studies presented here. 

Although the focus is not always on tropical forests, the case studies are still useful to 

illustrate good practice and lessons learned, some of which can be transferred to a tropical 

forest environment. 
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Table 6.3.1: Variables of interest for biodiversity monitoring organized by EBC and EBV. Shading is partly based on the 

characterization of O’Connor et al. (2015) of RS-EBVs, i.e. green is totally or partially observable by remote sensing and red is 

not observable, requiring ground-based data. 

EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

Species 

populations 

(SP) 

Species 

distribution 

Field observations/ 

presence surveys 

for groups of 

species or single 

species; easy to 

monitor over an 

extensive network 

of sites with 

geographic 

representativeness

. Via patrol 

records, transects, 

species lists, 

village group 

discussion, camera 

traps, hair traps, 

footprints 

protocols, mist-

nets, pitfall traps 

Training in patrol 

records, 

transects, 

species lists, 

village group 

discussion, 

species 

identification and 

training in 

protocols for 

collection of 

other 

animal/plant 

census data, 

collection of DNA 

samples for DNA 

barcoding, 

nested 

vegetation plots 

Via aerial photos to count 

large mammals, reptiles or 

certain plants in less dense 

forests and woodlands. 

Potential role for incidental 

data from any spatial 

location.  

Via remote sensing 

imagery, including 

hyperspectral technology 

(Carlson et al. 2007). 

Native or invasive plant 

species classification and 

distributions (Gillespie et al 

2008; Everitt et al., 2006). 

Potential role for incidental 

data from any spatial 

location.  

Several case studies; see 

Giorgi et al. (2014). 

Examples of the use of: 

 patrol records 

(Brashares and Sam, 2005; 

Danielsen et al., 2010; Gray 

and Kalpers, 2005) 

 community-based 

transects (Andrianandrasana 

et al., 2005; Becker et al., 

2005; Rovero et al., 2015)  

 community-based 

species lists (Bennun et al., 

2005; Hockley et al., 2005; 

Roberts et al., 2005)  

 village group discussion 

(Poulsen and Luanglath, 

2005; van Rijsoort and 

Jinfeng, 2005; Danielsen et 

al., 2014a)  

Population 

abundance 

Population counts 

for groups of 

species; easy to 

monitor and/or 

Training in patrol 

records, 

transects, 

species lists, 

Via aerial photos to count 

large mammals, reptiles or 

certain plants animals in 

Many examples in the row 

above 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

important for 

ecosystem 

services and 

habitat quality 

assessment, over 

an extensive 

network of sites 

with geographic 

representativeness

. Via patrol 

records, transects, 

species lists 

(presence or 

absence of species 

on fixed-time lists 

incl. 1-day index 

of abundance), 

and village group 

discussion. 

village group 

discussion and 

nested 

vegetation plots. 

Quadrats, point 

counts, camera 

trapping, mist 

nets, with 

individual 

identification 

techniques 

(bands, tags) 

review and 

analysis of 

imagery 

less dense forests.  

Via model inputs derived 

from remote sensing 

imagery, including 

hyperspectral remote 

sensing for native or 

invasive vegetation 

assessments and 

monitoring (Gillespie et al 

2008; Carlson et al, 2007; 

Foody et al., 2005).  

Population 

structure 

by age/size 

class 

Quantity of 

individuals or 

biomass of a given 

demographic class 

of a given taxon or 

functional group at 

a given location, 

e.g. via forest 

vegetation plots 

for monitoring 

Identification of 

size classes, dbh 

measurements, 

and from capture 

and release 

Vegetation structure 

measurements via active 

remote sensing technology 

(e.g., LiDAR) and: Laser 

Vegetation Imaging Sensor 

(LVIS), an aircraft-

mounted LiDAR sensor.  

 

Examples of the use of 

community-based forest 

vegetation plots for monitoring 

forest biomass (Skutsch et al. 

2011; Brofeldt et al. 2014; 

Torres & Skutsch 2015, 

Theilade et al. 2015) 

Examples of the use of 

community-based vegetation 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

forest biomass and 

tree diversity 

plots for monitoring tree 

diversity (Zhao et al. In review 

in PLoS ONE). 

Species 

traits (ST) 

Phenology Record timing of 

periodic biological 

events for selected 

taxa/phenomena 

at defined 

locations. 

Examples include: 

timing of breeding, 

leaf coloration, 

flowering. Via 

patrol records, 

transects, and 

village group 

discussion 

Identification of 

plant and animal 

species, their life 

cycles/stages; 

use common 

staging 

classification 

(e.g. NPN). 

A range of remotely-

sensed vegetation 

indicators can be used to 

determine phenology of 

some plant types, e.g. 

crops, annual plants, leaf-

area index 

Examples of the use of patrol 

records, community-based 

transects, and village group 

discussions provided above 

(row on species populations). 

Examples from temperate 

areas include: 

 National Phenology 

Network (section 6.4.8) 

(Kellermann et al., 2015) 

 Movebank 

(www.movebank.org), 

 Project Budburst 

 Climatewatch.org 

 Phenocams (Crimmins 

and Crimmins, 2008) 

 try-db.org 

Body mass Body mass (mean 

and variance) of 

selected species 

(e.g. under 

harvest pressure), 

at selected sites 

(e.g. exploitation 

Animal 

population field 

methods. 

Measurements 

from capture & 

release, and 

examination of 

No Case study in Majete Wildlife 

Reserve, Malawi (section 

6.4.9); Constantino (2015) 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

sites). harvested 

individuals  

 

 

 

Natal 

dispersal 

distance 

Record 

median/frequency 

distribution of 

dispersal distances 

of a sample of 

selected taxa. 

 No Unaware of current examples 

Migratory 

behavior 

Record presence, 

absence, 

destinations, 

pathways of 

migrant selected 

taxa, e.g. via 

patrol records and 

village group 

discussion 

Train in the 

identification and 

field count 

methodologies 

for migratory 

raptors, 

butterflies 

Use of radar imagery; 

satellite or radio tagging 

An example of the use of patrol 

records and village group 

discussion for recording 

seasonal migration of 

ungulates include Topp-

Jørgensen et al. (2005) 

Examples from temperate 

areas include: HawkWatch 

(hawkwatch.org); eBird 

(ebird.org); Movebank; 

Journey North 

(www.journeynorth.org) 

Demo-

graphic 

Effective 

reproductive rate 

Measurements 

from capture and 

No Case study in Majete Wildlife 

Reserve, Malawi (section 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

traits (e.g. by age/size 

class) and survival 

rate (e.g. by 

age/size class) for 

selected taxa at 

selected locations 

release studies  6.4.9); 

Freshwater turtle monitoring 

schemes in Zábalo, Ecuador, 

e.g. Townsend et al. (2005) 

Physiologic

al traits 

For instance, 

measurement of 

thermal tolerance 

or metabolic rate. 

Assess for selected 

taxa at selected 

locations expected 

to be affected by a 

specific driver. 

Capture and 

rearing of insects 

for bio-chemical 

analyses (see 

Dyer et al. 2012)  

No See Dyer et al. (2012) 

Community 

Compositio

n 

(CC) 

Taxonomic 

diversity  

Multi-taxa surveys 

(including by 

morphospecies) 

and metagenomics 

at selected in-situ 

locations at 

consistent 

sampling scales 

over time, e.g. via 

patrol records, 

transects, species 

lists, and 

Training in patrol 

records, 

community-

based transects, 

species lists, and 

nested 

vegetation plots. 

Training in other 

survey 

techniques (mist 

nets, camera 

Hyper-spectral remote 

sensing over large 

ecosystems 

Case study in Loma Alta, 

Ecuador (section 6.4.2); 

Pacaya Samiria, Peru (section 

6.4.1)  

 

 

Examples of community-based 

tools used in practice (Bennun 

et al. 2005; Danielsen et al. 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

permanent forest 

vegetation plots 

traps, etc.) 2014a, Rovero et al. 2015; 

Zhao et al. 2016; Dyer et al. 

(2012) 

Species 

interactions 

Studies of 

important 

interactions or 

interaction 

networks in 

selected 

communities, such 

as plant-bird seed 

dispersal systems 

or of threats 

operating at local 

or larger scales. 

Via patrol records, 

transects, and 

village group 

discussions  

Species 

identification of 

focal species and 

disturbances 

using survey 

transects and 

capture & release 

 

Combined with multi-

spectral remote sensing 

data, LiDAR offers potential 

for parametrizing 

predictive organism-

habitat association models. 

 

Case study in Pacaya Samiria, 

Peru (section 6.4.1)  

Case study in Majete Wildlife 

Reserve, Malawi (section 6.4.9) 

See Dyer et al. (2012). 

See also examples above (in 

the row on species 

populations) 

Ecosystem 

function 

(EF) 

Net primary 

productivity 

Validation of 

measurement of 

net productivity 

for selected 

groups. For forest 

trees via 

permanent forest 

Measure change 

in biomass in 

permanent forest 

vegetation plots 

and nested 

vegetation plots 

Global mapping with 

modeling from remote 

sensing observations 

(fAPAR, ocean greenness) 

and selected in-situ 

locations (eddy 

covariance); calculated 

from NDVI (normalized 

Examples of the use of 

community-based forest 

vegetation plots for net 

primary productivity (Skutsch 

et al. 2011; Brofeldt et al. 

2014; Torres & Skutsch 2015) 

Case studies: San Pablo Elta; 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

vegetation plots  difference vegetation 

index); ocean colour 

MX for carbon assessment; and 

community-based monitoring 

for REDD+ (section 6.4.3); 

Casas de la Selav (section 

6.4.4) 

Secondary 

productivity 

Measurement of 

secondary 

productivity for 

selected functional 

groups, using in-

situ methods or 

methods 

combining in-situ, 

remote sensing, 

and models. 

Example of 

functional groups 

include: bush 

meat;, fisheries; 

livestock; krill; 

herbivorous birds. 

Via patrol records, 

transects, and 

village group 

discussion 

 See above Case study in Pacaya Samiria, 

Peru (section 6.4.1) for hunted 

and fished species, and in Lake 

Aloatra, Madagascar (section 

6.4.10) for fish productivity. 

Examples of community-based 

tools used for monitoring 

production of non-timber forest 

products, fish, and freshwater 

turtle eggs (Danielsen et al., 

2000, 2007; Poulsen and 

Luanglath, 2005; Topp-

Jørgensen et al., 2005; 

Townsend et al., 2005) 

Nutrient Ratio of nutrient 

output from the 

 Monitoring of crop cover to Case study in Loma Alta, 

Ecuador on water capture 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

retention system to nutrient 

input, measured at 

selected in-situ 

locations. Can be 

combined with 

models and 

remote sensing to 

extrapolate 

regionally. 

infer nutrient retention (section 6.4.2) 

Disturbance 

regime 

(e.g.  

pest 

outbreak) 

Type, seasonal 

timing, intensity 

and frequency of 

event-based 

external 

disruptions to 

ecosystem 

processes and 

structure. Flood 

regimes; fire 

frequency; 

windthrow; pests. 

Via patrol records, 

photo 

documentation, 

and village group 

discussions 

Training in patrol 

records, photo 

documentation, 

and village group 

discussions. 

Species 

identification of 

key focal species 

and disturbances 

using survey 

transects and 

capture & release 

 

 

Large and sudden changes 

might be identified through 

remote sensing (RS) but 

not smaller, slower 

outbreaks. Examples: sea 

surface temperature and 

salinity (RS); 

scatterometry for winds 

(RS); fire frequency (in-

situ); burnt areas (RS); oil 

spills (RS); cultivation/ 

harvest (RS); monitor 

vegetation indices over 

time (RS) 

Case study in Pacaya Samiria, 

Peru (section 6.4.1), Kafa, 

Ethipioa (section 6.4.13). 

Examples of the use of patrol 

records, community-based 

transects, and village group 

discussions for monitoring fire 

and other threats to forest 

ecosystems are listed above 

(the row on species 

populations). 

An example of the use of 

community-based photo 

documentation method to 

monitor threats is found in 

Danielsen et al. (2000) 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

Ecosystem 

Structure 

(ES) 

Habitat 

structure 

Via photo 

documentation, 

and forest 

vegetation plots. 

Data calibration of 

habitat structure 

(canopy height, 

habitat 

classification, etc.)  

Training in photo 

documentation, 

and community-

based forest 

vegetation plots 

and nested 

vegetation plots 

Remote sensing 

measurements of cover (or 

biomass) by height (or 

depth) classes globally or 

regionally, to provide a 3-

dimensional description of 

habitats. Different sensors 

can measure biomass 

globally or locally but this 

requires more calibration 

and validation data to 

improve the maps, 

especially globally. 

Case study San Pablo Elta, 

Mexico (section 6.4.3) and Gazi 

Bay, Kenya (section 6.4.11). 

Examples of the use of photo 

documentation (Danielsen et 

al., 2000), community-based 

forest vegetation plots for 

monitoring forest biomass 

(Skutsch et al. 2011; Brofeldt 

et al. 2014; Torres & Skutsch 

2015) and tree diversity: Zhao 

et al. 2016). 

Ecosystem 

extent and 

fragmentati

on 

Local (aerial photo 

and in-situ 

monitoring). Some 

wetland areas can 

be identified using 

RS but remains 

problematic. 

Requires more 

calibration and 

validation data. 

Mapping 

boundaries, e.g. 

of wetlands, and 

wetland 

identification  

Global mapping (satellite 

observations) of 

natural/semi-natural 

forests, wetlands, free 

running rivers, etc.  

 

Case study San Pablo Elta 

(section 6.4.3). 

Global map of wetland extent 

by Lehner & Döll (2004); new 

water occurrence product by 

JRC (Pekel et al., 2014) 

 

Ecosystem 

composition 

by 

functional 

Functional types 

can be directly 

inferred from 

 Functional types can be 

inferred from remote 

sensing (translated from 

N/A 
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EBC Class/ 

Variable of 

interest 

EBV Measurement in-

situ 

Training for in-

situ data 

collection by 

community 

members 

Can it be measured 

remotely by 

professional scientists? 

Examples of data 

repositories or tools 

type morphology. land cover maps) 

OTHER Land cover Photo 

documentation 

 

Knowledge of 

land cover 

definitions, 

protocols for 

collection, 

training in image 

interpretation 

Land cover can be 

identified using automated 

and semi-automated 

classification methods but 

higher accuracies and 

higher temporal 

frequencies are needed. 

Requires more calibration 

and validation data. 

See Halme and Bodmer (2006) 

for an example from 

Amazonian Peru 

 

 

Land use Village group 

discussions. Photo 

documentation. 

Household surveys 

Training in 

survey methods 

Some land use types can 

be identified with RS but 

most are not discernible or 

require knowledge from 

the ground 

Several examples of the use of 

village group discussions and 

photo documentation for 

monitoring land use can be 

found in Danielsen et al. 

(Danielsen et al., 2005b)  

Cultural 

and social 

heritage 

Village group 

discussions 

Training in 

participatory 

methods 

RS could be used to 

identify change in an area 

but monitoring of cultural 

and social heritage 

requires ground-based 

data collection 

Examples in Danielsen et al. 

(Danielsen et al., 2005b) 

Case study in Pacaya Samiria, 

Peru (section 6.4.1) 
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Table 6.4.1: Summary of case studies with relevance to Essential Biodiversity Classes 

Section Location Types of 

participants 

References EBCs 

6.4.1 Pacaya Samiria, Peru Both Bodmer et al. (2008; 

2014) 

SP, ST, CC 

6.4.2 Loma Alta, Ecuador Both Becker et al. (2005) SP, ST, CC, EF 

6.4.3 San Pablo Etla, Mexico Community- 

based 

 SP, EF, ES 

6.4.4 Casas de la Selva, 

Puerto Rico 

Citizen science 

monitors 

Nelson et al. (2010; 

2011) 

SP, CC, EF, ES 

6.4.5 Atlantic Forest, Brazil Both Giorgi et al. (2014) SP, ST, CC 

6.4.6 Project COBRA, Guyana Community-

based 

Berardi et al. (2013); 

Mistry et al (2014) 

SP, CC, ES 

6.4.7 National Program for 

Biodiversity Monitoring, 

Brazil 

Community-

based 

Pereira et al. (2013b); 

Nobre et al. (2014); 

Santos et al. (2015) 

SP, ST, CC 

6.4.8 National Phenology 

Network, North America 

Both Reports and scientific 

publications can be 

found at: 

https://www.usanpn.org  

SP, ST 

6.4.9 Majete Wildlife Reserve, 

Malawi 

Both  SP, ST, CC, EF 

6.4.10 Lake Aloatra, 

Madagascasar 

Community-

based 

Andrianandrasana et al. 

(2005) 

SP, ST, CC 

6.4.11 Gazi Bay, southern 

Kenya 

Both Huxham et al. (2015) SP, ST, CC, EF 

6.4.12 REDD+ monitoring in 

China, Indonesia, Laos 

and Vietnam 

Community-

based 

Brofeldt et al. (2014) SP, ST, CC, EF 

6.4.13 Kafa Biosphere 

Reserve, Ethiopia 

Community-

based 

Pratihast et al. (2014: 

2016) 

SP, ST, CC, EF 

6.4.14 Protected Areas, 

Philippines 

Community-

based 

Danielsen et al. (2009) SP, ST, CC 

 

6.4.1 Pacaya-Samiria National Reserve, Peru 

The Pacaya-Samiria National Reserve (PSNR) is one of the largest protected areas in Peru 

with an area of more than 20,000 km², situated between the confluence of the Marañon 

and Ucayali Rivers. The PSNR has around 20,000 people living within the reserve 

boundaries.  

https://www.usanpn.org/
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A biodiversity monitoring program was developed in 2001 for data gathering to be 

conducted by both local community members as well as international citizen scientists 

and students (e.g. Earthwatch volunteers, Operation Wallacea students). The current 

project is helping to conserve the biodiversity of the Amazon, and is working with local 

people to collectively better manage the rich resources from this region. The project is 

led by Richard Bodmer, a reader in Conservation Ecology at the Durrell Institute of 

Conservation and Ecology (DICE), UK, and also the president of FundAmazonia 

(www.fundamazonia.org).  

The reserve was originally created in 1982 as an area with strict protection that largely 

excluded local people. This led to conflict between the reserve authorities and the local 

population who lost long-term interest in managing their traditional lands inside the 

reserve and reverted to overharvesting. The conflict escalated with the reserve authority 

battling to reduce harvesting and the local people taking as many natural resources as 

they could, as fast as they could. After violent confrontations, the Peruvian Protected 

Area Authority changed its management policy and in 1998, the local people actively 

participated in reserve management as a co-managed reserve. By 2006, the biodiversity 

monitoring program began to demonstrate that many animal populations along the 

Samiria River basin had recovered, e.g. woolly monkeys, black caiman, manatees, and 

turtle populations, after the change to include locals in management decision making 

(Bodmer et al., 2008). More recently, the project has been evaluating the impact of 

climate change events, especially severe droughts and extreme flooding on the 

biodiversity and local people, which have resulted in decreasing populations of resource 

use species. Bush meat species have largely disappeared as a result of the consistent 

extreme floods impacting the livelihoods of the local population (Bodmer et al., 2014).  

Approaches Used and Data Collected 

Over a number of years, the research team has developed rigorous protocols to train 

both local community members as well as international citizen scientists in collecting data 

on wildlife surveys using observational and capture and release techniques. Moreover, 

the project also trains local biologists in basic methodologies that provide essential 

support to the community-based monitors and international citizen scientists, and 

verification of data quality. Community-based observers and international citizen 

scientists are given a range of research tasks and responsibilities. These include carrying 

out censuses along transects for terrestrial mammals and game birds, point counts for 

macaws, capture and release studies of fish and caimans, aquatic transects of wading 

birds, river dolphins and turtles, and the setting and checking of camera traps to record 

large ground dwelling mammals, particularly carnivores, ungulates and edentates. A key 

to engaging local community members was the inclusion of species important for 

subsistence hunting and fishing since the beginning of the project, and species that 

provide economic benefits. Citizen scientists are interested in the project because of its 

broader implications for conservation of biodiversity in the Amazon and climate change. 

The data collected during wildlife surveys involves field teams that are always composed 

of 1) local community members, 2) citizen scientists and 3) local biologists. Each type of 

person has a different role, which when combined, yields large verified data sets. The 

local community members are particularly adept at sighting animals in the physically 

complex forests. The citizen scientists are adept at data recording, measurements and 

data entry, and the local biologists are trained to verify data collected, including species 

identification, GPS locations, transect lengths, and measurements. 

Adaptive management activities at the Samiria River basins are being incorporated as a 

result of the insights gained through Earthwatch and Operation Wallacea research. In 

2007, a review of change occurring over the previous years found significant 

improvements for the wildlife, environment, and local people. Monitoring demonstrated 

increasing numbers of key species such as giant otters and primates and increased 

awareness of rare species using protected areas (e.g. manatees). The data have also 

helped to identify potential ecological interactions that may limit species response, e.g. 

http://www.fundamazonia.org/
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increases in large-bodied primates are correlated with decreases in small-bodied 

primates; increases in black caiman lead to a decrease in speckled caiman (Bodmer and 

Puertas, 2007). 

Over the past 8 years the ‘citizen science’ monitoring program has shown how recent 

climate fluctuations are impacting biodiversity and the livelihoods of the local people. The 

historically high floods of 2009, 2011, 2012 and 2013 have resulted in population crashes 

of the ground dwelling species in the flooded forests, including white-lipped and collared 

peccary, red brocket deer, black agouti, paca, armadillos, giant anteater, among others. 

Many of these species were the favored bushmeat species of the Cocama indigenous 

people who can no longer rely on this subsistence resource (Bodmer et al., 2014). The 

monitoring data show that an estimated 2 million ground dwelling animals have died 

from the recent impacts of climate change in the northern Peruvian Amazon of Loreto. A 

co-benefit from engaging international citizen scientists is the first hand appreciation and 

increased awareness of the impact of carbon emissions and economic development on 

natural and human systems. 

Successful Outcomes 

Prior to establishing this model of protected areas, the regional government had taken 

the view that the PSNR was not functioning and had not looked to establish any more 

protected areas. However, monitoring by the “citizen science” program delivered 

quantitative results, demonstrating the success of the reserve (Bodmer et al., 2008). 

With the monitoring results in hand, the regional government was able to look at drafting 

new protected areas. Wildlife monitoring by the local community and international citizen 

scientists played an important role in helping to justify new protected areas in Loreto and 

increase the prevalence of community-based co-management systems. 

The development of a biodiversity monitoring program for key wildlife species in and 

around the protected areas has been key to a more successful and comprehensive 

management program and helped create successful public-private partnerships with local 

people. The project has also led to increased economic input into the region with respect 

to the value of the reserve and its wildlife via international citizen science. 

The impacts of climate change have been documented through the “citizen science” 

based program and present new challenges for the reserve and the local people living in 

the area. Threats are becoming obvious from the greater variations in water level, both 

in terms of droughts and intensive flooding. By working together, the reserve authority 

and local people are taking a collaborative and combined effort to overcome and adapt to 

the physical nature of climate change impacts. 

 

6.4.2 Loma Alta, Ecuador 

By 1994, most of the forest cover along the west coast of Ecuador had been cleared or 

selectively harvested, leaving less than 5% remaining (Becker, 1999). While looking at 

aerial photos, Dr. Dusti Becker was surprised and curious about large areas of forest 

remaining in the Colonche Hills near the community of Loma Alta. The land was 

communally owned, so tragedy of the commons should have made deforestation more 

likely. Why then were there thousands of hectares of fairly pristine intact cloud forest still 

there? In 1995, Becker put together a team of natural and social scientists from Indiana 

University, all influenced by the thinking of Dr. Elinor Ostrom a champion of the idea that 

local people can develop rules to sustain and manage natural resources independently of 

national government influence (and winner of the Nobel Prize in Economics in 2009 on 

this theme). With additional citizen scientists from Earthwatch, the Becker/Ostrom 

research team headed to Loma Alta to study the forest and interview community 

members to find out if the villagers had devised special rules or traditions to protect the 

forest.  
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The team discovered that the community had a strong system of local governance, but 

there were few rules explicitly in place to conserve the forest. The only rule that 

significantly slowed deforestation was a ban on timber exploitation by large forestry 

companies – only local community members were permitted to harvest trees and make 

them into boards for sale. These local wood-cutters didn’t have the capacity to clear the 

forest quickly. Most of the forested land had been allocated to families for eventual use, 

but people were too poor to develop it. The most distant communal land had been stolen 

and cleared by another ethnic group who had cleared and burned about 200 hectares to 

encourage grass for cattle. By the end of our study, it was painfully clear that eventually, 

the Loma Alta forest would go the way of the other 95% as ranchers, local wood cutters 

and farmers expanded slowly cleared away the incredibly diverse and lush tropical 

montane forest (Becker, 1999).  

While standing on the edge of the forest one foggy day, our team noticed that it seemed 

to be raining inside the forest but was only foggy in the cleared pasture. The forest was 

muddy, while the pasture soil was dry. Becker knew what the next citizen science effort 

had to be. We had to measure fog capture, report results to the villagers and hope that 

they would use their good governance to protect the forest for its valuable ecosystem 

service of providing water for all the activities in the lowlands.  

In May 1995, several Loma Alta villagers were trained to monitor through-fall from fog 

capture, which is the quantity of water dripping off trees and other plants during the fog 

season (Jun-Nov). This water originates from fog and mist (locally known as garua) that 

forms over the Pacific Ocean, where it is intercepted by vegetation, and particularly on 

windward slopes of coastal mountain ranges. Monitoring by the community and 

Earthwatch volunteers during 1995 revealed that 2.24 million liters of water were 

trapped by trees per hectare on the slopes of Loma Alta. Equivalent to an Olympic 

pool/per hectare, fog-capture by the forest doubles the amount of water provided by rain 

in the Loma Alta watershed. The importance of the ecosystem service is further shown by 

the fact that a neighboring community in an adjacent watershed cleared its forest, their 

land became a scrub desert and they began purchasing water from Loma Alta. Despite 

these realities is was not until the Becker team reported on fog capture that the 

community became very proactive about forest conservation.  

The data on fog capture enhanced local awareness about ecosystem services, leading 

them to alter their land use from the slowly extractive (and destructive) to protective, as 

they officially made an ecological reserve. As a result of the monitoring program 

pertaining to the water provisioning services by the forest, the community allocated more 

than half of the community lands to be a forest reserve. Many of the families who had 

lost rights to expand agricultural fields and cut timber were looking for new ways of 

making income. The community and Earthwatch volunteers decided to monitor bird 

diversity, hoping that findings and publications would encourage bird watching and 

ecotourism in the future. In 2004, the bird monitoring led to the entire Loma Alta 

watershed being declared an international Important Bird Area (IBA), because the 

Earthwatch and community monitoring teams had discovered 78 endemic species, 15 

endangered species, and striking aggregations of hummingbirds.  

Local awareness about the value of biodiversity has been greatly enhanced from none to 

a keen enthusiasm for local birds and wildlife and pride from local development of 

ecotourism. A small hotel and visitor cottages were built just outside the reserve while 

two small camps for visitors and researchers who come to enjoy the natural area or 

study birds have been set up inside, providing extra income to the local community. The 

project has also developed new and strengthened existing social connections at local, 

regional, national and international levels, and there have been positive impacts on how 

local people perceive themselves.  

Starting around 2008 the community received "Socio-bosque" funding from the 

Ecuadorian government as part of international carbon sequestration payments to 



   

244 

 

developing nations. The money, which is on the order of $ 20,000 to $ 30,000 USD/year, 

is used for protecting the reserve and for community development needs. Community 

rangers patrol the 7,000 acres of native vegetation, about half of which is recovering to 

mature cloud forest, and there are now only very rare cases of cutting and subsistence 

hunting, primarily because the community does not depend on exploitation of the forest 

for survival and needs the water provided by the intact forest ecosystem. The system is 

likely to be sustainable long into the future because most leaders and decision-makers in 

the community have a more “total” economic value for the forest now than they had in 

1994. Now, it is clear to most everyone that the indirect values of ecosystem services 

and the option value associated with tourism far outweigh direct values of timber 

harvesting and farming in the cloud forest.  

Originally conceived and led by Dr. Dusti Becker of Life Net Nature, with help from Aves 

de Ecuador, and Earthwatch Institute, avian monitoring and community-based 

conservation efforts are continued by Eve Astudillo Sanchez-Breon from University 

Espiritu Santo in Guayaquil, Ecuador. Dovetailing local indigenous efforts with capable 

well-educated citizens is far more sustainable than projects that rely on foreign-based 

conservation organizations. More details of this case study can be found in Becker et al. 

(2005). 

 

6.4.3 San Pablo Etla, Mexico 

San Pablo Etla (SPE) is a municipality in the Etla Valley of Oaxaca, Mexico, approximately 

20 km northeast of the state capital. SPE abuts the Sierra Norte mountain range of 

southern Mexico, and maintains a 3,000 hectare forest reserve that includes large stands 

of oak, pine and mixed oak/pine forest. The community elects a Commission of 

Communal Resources to manage, protect and resolve disputes regarding the 

community’s reserve. Commission members donate their time as community service for 

three-year terms. Although the reserve contains large stands of high quality timber 

species, in the early 1990s, SPE became a “Community Voluntarily Committed to 

Conservation,” an official designation by the National Commission on Protected Natural 

Areas (CONANP). The community has declared the land off-limits for timber harvesting, 

hunting, destruction of plant life, and instead manages the lands for the provision of 

ecosystem services, including water provision, carbon storage, biodiversity, and eco-

tourism. While the community has obtained some public and private grants to cover 

some of the costs of conserving the reserve, its sustainability will ultimately depend on 

whether or not it can receive payments from the end beneficiaries of its eco-services 

such as water provision to the Oaxaca City metropolitan area and carbon off-sets for 

standing timber. 

Approaches Used and Data Collected 

In 2011, UC Davis researcher, John Williams, worked with community members to 

conduct a carbon inventory of the SPE forest reserve. Using established carbon market 

measurement protocols (Pearson et al., 2005), Williams and local forest reserve staff 

established a series of forest biomass plots where they measured standing woody 

biomass volume for each of the three major forest types of the reserve. The sampling 

data were then input into a carbon calculator (Winrock International, 2006) to generate 

an estimate of carbon stored in aboveground woody biomass within the reserve. Forest 

conservation and data-supported estimates of aboveground woody biomass for the forest 

reserve will hopefully lead to carbon offset payments in the future. 

In addition to the carbon storage study, community members and visitors have initiated 

a number of additional projects including: an orthorectified, geographic information 

system (GIS) based community map to support additional management activities and 

scientific research; a thorough year-round inventory and monitoring of the bird species 

found in the forest; camera-trap monitoring of wildlife populations; a collaborative 

weather monitoring effort with the Mexican Water Commission (CONAGUA) and the 
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National Research Institute for Forestry, Agriculture, and Livestock (INIFAP); 

reforestation of degraded lands in the lower-elevations of the reserve; an environmental 

demonstration and educational center “La Mesita,” which includes a nursery for native 

plants and tree seed collection and propagation, erosion control techniques, water 

capture and usage techniques, and a series of award-winning landscape architectural 

design projects conducted in collaboration with the Real Architecture Workshop (RAW), a 

U.S.–based educational organization engaging volunteer architecture students. 

Successful Outcomes and Lessons Learned 

Multi-year bird diversity monitoring and data collection is undertaken that is input into 

the open-access eBird database managed by Cornell University and is available to 

scientific researchers, conservation managers, and bird enthusiasts worldwide. There is 

local participation in ecological research and biodiversity monitoring, resulting in several 

university level theses on themes including medicinal plants and uses, oak propagation 

techniques, and flora and fauna inventories.  

 

There has been systematic education in the conservation education center of SPE, which 

has resulted in greatly increased community awareness about the municipality’s natural 

resources, species diversity, and the connection between forest protection and the 

benefits people receive from healthy ecosystems. There is also local pride about the 

reserve and the community’s environmental image, as well as increased local 

involvement in related projects. 

 

Success has also spread to neighboring communities, which have recognized and been 

inspired by SPE’s natural resource management achievements and have been inspired to 

develop similar types of projects. There has also been an increased awareness and 

tourism by Oaxacan, Mexican and international visitors, as well as an increased interest 

by scientists to conduct ecological research in the reserve, providing more opportunities 

for locals and visitors to participate in citizen science projects. 

 

Currently, researchers from the Mexican National Polytechnic Institute are conducting a 

number of studies in the Reserve, including an investigation of the effects of climate 

change on the distributions of trees, rodents and butterflies, and one using bioacoustic 

techniques to examine how closely-related bird species establish territories and partition 

resources. 

 

Community commitment to conservation that enables continuous efforts over many years 

and across sequential governing administrations is essential to achieving cumulative 

conservation progress. Incremental development of small projects leads to a critical 

mass-type of momentum that leads to greater community support and additional 

awareness and opportunities. No single theme (e.g., ecotourism, carbon offsets) will 

meet all the community’s natural resource expectations, but a broad-spectrum approach 

with a diverse set of projects can be effective for raising awareness of conservation 

benefits and for building community support. Community collaboration with a broad-

range of public and private organizations is essential for resource mobilization.  

6.4.4 Casas de la Selva, Puerto Rico 

Las Casas de la Selva is an experimental sustainable forestry and rainforest enrichment 

project begun in 1983 in southeastern Puerto Rico in the Cordillera Mountains. The 409 

ha forest is located on steep slopes, at an average elevation of 600 m (2000 ft), 

receiving an average annual rainfall of over 3000 mm and an average temperature of 22 

deg. C. Most of the land was logged, converted to coffee plantations and then 

subsequently abandoned, resulting in areas of severe erosion and a secondary forest 

which now covers the property. The project is managed by Thrity Vakil and Andrés Rua, 

with assistance from Dr. Mark Nelson on scientific papers and Norman Greenhawk, a 

herpetologist currently working on a Master’s degree. 
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The Las Casas de La Selva project, undertaken by Tropic Ventures Research and 

Education Foundation (Patillas, P.R.) with consulting by the Institute of Ecotechnics 

(U.K., U.S.) has three principal objectives:  

1- Restore and conserve the secondary forest ecosystem.  

2- Identify and test the forestry techniques that provide the best ecological and 

economic outcomes as viable alternatives to conversion of the forest for 

agricultural and other uses. 

3- Monitor the forest and its trees, key indicator animal species and the resource use 

to understand the ecological and socio-economic impacts of the project. 

 

Foresty enrichment with line-planted valuable timber species was chosen as a method of 

providing economic returns without destroying the secondary forest on the land. Between 

1984 and 1990 some forty thousand tree seedlings were planted in lines in about 25% of 

the secondary forest. Ninety percent of the seedlings were mahogany (mainly Swietenia 

macrophylla x S.mahagoni) while the other 10% was primarily mahoe (Hibiscus elatus). 

Seventy-five percent of the land including the steeper slopes of the forest were left 

untouched to minimize erosion and to provide areas to study natural regeneration and 

ecological succession of the forest. On the areas previously converted to grazing, more 

than a thousand fast-growing Pinus caribaea (Caribbean pine) were planted to hold the 

soil and mahogany and mahoe interplanted once the pines had established.  

The hypothesis was that the program of line-planting, since overall forest conditions are 

minimally disturbed, would result in only small changes in both forestry parameters and 

in faunal populations. Small impact on tree and amphibian diversity was demonstrated by 

research after twenty years of the program (Nelson et al., 2010).  

There are also studies, begun in 2009, of the “liberation thinning” technique to improve 

growth of valuable native trees in secondary forests (Wadsworth and Zweede, 2006). 

These are the first tests in Puerto Rico to see whether eliminating competitor trees will 

accelerate the growth of native hardwood species. If so, it will provide better economic 

returns and rationales for valuing and protecting secondary forests which are rapidly 

expanding on the island due to the abandonment of farming land.  

More details of this project and its results on growth of the line-planted trees and its 

minimal ecological diversity impacts can be found in Nelson et al. (2011, 2010) and 

www.eyeontherainforest.org. 

 

Approaches Used and Data Collected  

The project staff includes some people with advanced or university training and also 

others who have learned forest management skills over several years through operating 

the project and collaborating with a wide diversity of scientists who have helped collect 

data. The data collection has also been helped by cooperation with the Earthwatch 

Institute, which has sent groups (i.e. citizen science monitors) since 2000, and also 

university classes and other volunteers.  

The types of data that have been collected include:  

● Measurements of tree survival and growth in the line-planted areas (basal 

area (BA), diameter at breast height (dbh), canopy, height, commercial height) 

and measurements of trees and biodiversity in the secondary forest areas 

compared to line-planted areas, in randomized geo-located plots. 

● Measurements of tree seedling numbers in both line-planted and secondary 

forest. 

http://www.eyeontherainforest.org/
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● Impact of thinning on the line-planted areas in random plots and impact of 

liberation thinning on plots in the secondary forest compared with control plots 

(with advice from Dr. Frank H. Wadsworth, the developer of liberation thinning). 

● Planting and monitoring of critically endangered endemic tree species for 

recovery and habitat enhancement. A shade nursery has been established for 

caring and sheltering of saplings of threatened endemic species until planting. 

The initial survival, growth rate, and success of the reintroduced material is 

monitored to ensure the best contribution to the recovery of the species. 

 

With support from the USDA Forest service and the Puerto Rican Department of Natural 

Resources, Las Casas de la Selva has been conducting a Forest Products Assessment. 

This project has enabled Andrés Rúa, a member of the Las Casas management and a 

“citizen scientist” to visit sawmill owners all over the island, interview dozens of artisans 

who work with forest products, as well as large and small scale wood and product 

dealers. The project aims to investigate use of forest products in Puerto Rico; where the 

wood is coming from; what types of wood; who are the buyers; and what other forest 

products are in demand and use. 

Herpetological studies have focused on identifying which species of reptiles and 

amphibians are present at Las Casas de la Selva in order to determine the population 

density, population fluctuations, microhabitat utilization, and the effects of forest 

management on the herpetofauna of the forest. Biodiversity and population studies of 

birds, vines and fungi have also been undertaken. Finally, basic meteorological data such 

as rainfall, temperature and relative humidity are recorded. 

Successful Outcomes 

The project would not have had the data to evaluate the overall program of forest 

enrichment nor its impact on natural biodiversity of the secondary forest without the 

extensive numbers and hours of research data collection. This has resulted in publication 

of several papers in forestry journals and helped project management evolve a program 

in response to the findings. In particular, it has quantified the success and rapid growth 

of the mahoe trees and other valuable native timber trees planted compared with the 

slower-growing mahogany.  

The confirmation that the forest enrichment program has not significantly decreased tree 

or amphibian diversity has validated the project’s main initial hypothesis and is helping 

make the project a model for sustainable forestry management on the island.  

Coqui frogs are an important part of the forest food chain and were studied as key 

indicator species in the line-planted and untouched forest. Common coqui 

(Eleutherodactylus coqui) and melodious coqui (E. wightmanae) are the most commonly 

encountered frog species at Las Casas. Although relative abundance means were slightly 

greater in the undisturbed forest and during the wet season, there were no statistically 

significant differences which shows that line-planting did not significantly affect 

amphibian diversity (Nelson et al., 2010). In addition, several threatened and 

endangered frogs have been discovered in the property, extending their known range 

and anole lizards, another key part of the fauna have been unaffected by forest 

enrichment (Greenhawk, 2013, 2015). 

Similarly, the line-planted areas had a slightly higher, but not statistically significant 

diversity, richness, and evenness of tree species than the control plots in the undisturbed 

forest. A multi-response permutation procedure (MRPP) showed statistically significant 

tree community composition differences between line-planting and control plots. But 

mean similarity among plots in both the line-planted and control plots was relatively low 

at less than 50% of shared species, indicating high diversity of vegetation in the overall 

forest area. Canopy cover by tree species greater than 3 cm in dbh was much higher in 

the undisturbed forest but as the young planted trees grow, this difference may be 
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reduced. These data indicate that forest enrichment through line-planting of valuable 

timber species in secondary subtropical wet forest does not significantly affect tree 

diversity (Nelson et al., 2010). 

Tree growth studied over 20 years since planting shows that mahoe had a BA increase 

over three times that of mahogany. In 57 years from planting, the mahoe trees will reach 

a mean stand BA of 0.20 m²/tree, which correlates to a dbh 50 cm. The upper quartile of 

mahoe trees currently have a mean BA greater than 0.10 m²/tree and are already being 

selectively harvested and marketed as a thinning of the stands. The BA annual increment 

for mahogany indicates that it will take 175 years from planting to achieve a mean stand 

BA of 0.20 m²/tree for the best 25% of the mahogany trees. In trials with native species, 

Coccoloba pubescen, Calophyllum brasiliense and Cedrela odorata had the greatest 

percent increase in height with favorable survival rates, but longer term studies are 

needed to determine years to commercial size. 

Because of the success, which has been validated by the enormous databases our citizen 

scientists have helped us collect, the project is also collaborating with a wide range of 

scientific institutions both in Puerto Rico (including the Institute of Tropical Forestry and 

the University of Puerto Rico at Rio Pedras) and elsewhere. It has also put Las Casas de 

la Selva in the forefront of a growing movement to promote a sustainable local 

timber/wood industry. Puerto Rico currently imports almost all of its commercial wood 

from the U.S. and Canada. Forest management for timber is still in its infancy despite the 

fact that the island has the greatest rate of secondary forest increase in the world. In 

another sign of the change of attitude towards its forests, the University of Puerto Rico 

has recently begun its first program in tropical forestry and silviculture. 

 

6.4.5 Landscape Partnerships Project, Southern Brazil 

The Brazilian Atlantic Forest (AF) is considered a major global biodiversity hotspot and is 

one of the most endangered ecosystems in the world (Myers et al., 1999; Mittermeier et 

al., 2004). The AF contains high biological diversity, including 1020 species of birds and 

250 of mammals, with high numbers of endemic and threatened species. Additionally, 

the AF offers numerous ecosystem services to the Brazilian and global population, for 

example, providing drinking water for 60% of the Brazilian population and the 

sequestering of 2 billion tons of CO2 (Calmon et al., 2011). The AF originally covered 

16% of the Brazilian territory, but only 11.7% of the original forest cover is now left, 

where the majority of remnants are isolated patches embedded in a mosaic of secondary 

and anthropogenic forest tree plantations, pastures and agricultural crops (Ribeiro et al., 

2009). These are subject to continued pressure from urbanization, agricultural 

expansion, and other threats associated with human presence, such as hunting and 

logging (Giorgi et al., 2014).  

Ana Paula Giorgi and Thais Azevedo Vieira of the Earthwatch Institute in Brazil and 

Morena Mills of the University of Queensland in Australia lead the Landscapes 

Partnerships project. This project aims to map conservation opportunities with a focus on 

conducting restoration actions in the Southern AF based on recently changed Brazilian 

environmental legislation. It consists of a three-stage framework for conservation 

planning to conduct conservation and restoration actions. First, high resolution satellite 

imagery (0.5m) is used to analyze the impacts of Brazil’s new Forest Code within the 

study region in order to identify areas at risk of deforestation and potential areas to be 

restored by mapping 15 watersheds (67,000 ha) throughout the Serra do Itajai National 

Park buffer zone. Second, interviews are conducted with local small-scale farmers to 

investigate motivations and barriers to participation in restoration initiatives, and to 

estimate the percentage of the population likely to adopt different programs and their 

adoption rate (Mills et al., submitted). Finally, biodiversity prioritization models are run to 

define priority areas for biodiversity conservation. The Landscape Partnerships 

opportunities map will be built by overlapping the results from these three stages. 
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Mapping conservation opportunities offers an understanding of the factors that contribute 

directly to effective actions and improves identification of candidate areas where 

conservation initiatives can be implemented feasibly.  

Approaches Used and Data Collected 

Citizen science monitors have been involved in carrying out censuses along transects as 

well as the setting and checking of camera traps to record terrestrial mammals. This 

research also includes the use of mist-nets, point counts for birds and bird banding. The 

citizen monitors help to check for footprints and set up the camera traps for mammal 

assessments, and for bird counts, they set up the mist-nets, and take the birds out of the 

nests to do biometric measurements. Since the start of the project in 2013, 180 small 

farmers/landowners have been interviewed regarding landscape perceptions and 67,000 

ha have been mapped at a 1:3000 scale. In 2013, during only 17 days of field work for 

bird assessment and monitoring, the team of researchers and citizen scientists captured 

485 birds from 94 species in the mist-nets. Of this number, 404 individuals were banded 

and released. When mist-nets and point count assessments were combined, the team 

identified a total of 199 species (18% of them are endemic to the AF) from 52 families 

living in one particular area of the study site. In 2014, while gathering bird data at a new 

site, citizen science monitors and researchers assessed 54 bird species, with 23 endemic 

to the AF and 45 listed in the IUCN Red List. 

Two types of maps have been produced for the national park managers, the Brazilian 

Federal Government, and the Santa Catarina State Government for monitoring and 

enforcement: a map of priority areas for biodiversity; and an opportunities map showing 

where restoration and conservation actions should be focused. 

Successful Outcomes 

Detailed information on the mammal and bird communities throughout the National 

Park’s buffer zone and surrounding water catchments has contributed to species 

population information. In addition, during the execution of the project, a potential 

Ecological Corridor, linking the two biggest protected areas of the Santa Catarina State, 

the Serra do Itajai National Park and the Serra do Tabuleiro State Park, was identified. 

The State Government invited the project coordinators to develop a proposal for such a 

corridor. Furthermore, a high number of birds are being banded, which will allow the 

team to include population dynamics and detailed ecological studies in the future, such as 

the effect of the fragmentation and different land-uses on the birds’ movements and 

behavior. This will contribute to data on both species traits and collection of land use 

information. 

6.4.6 Project COBRA, Guyana, South America 

Jay Mistry of Royal Holloway University of London and Andrea Berardi of The Open 

University are key proponents of the COBRA project (Community Owned Best practice for 

sustainable Resource Adaptive management), which is funded by the European 

Commission’s 7th Framework programme. The mission of COBRA is to “find ways to 

integrate community owned solutions within policies addressing escalating social, 

economic and environmental crises, through accessible information and communication 

technologies” in the Guiana Shield region of South America (see www.projectcobra.org). 

Starting in September 2011, the project has worked with various Indigenous 

communities in Guyana, Brazil, Suriname, Venezuela, French Guiana and Colombia (see 

http://projectcobra.org/communities for a description of each community). The aim of 

the project is to showcase Indigenous solutions for the management of natural resources 

and change development policies and projects so that they strengthen the position of 

Indigenous communities as stakeholders rather than undermine them, while inspiring 

other communities to take the initiative in facing up to global challenges. 

 

 

http://www.projectcobra.org/
http://projectcobra.org/communities
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Approaches Used and Data Collected 

Project COBRA used accessible visual methods of Participatory Video (PV) and 

Participatory Photography (PP) to collect information about the social-ecological viability 

of Indigenous communities. Through a facilitated process, indigenous community 

members identified and recorded indicators that they perceived as allowing their 

community to survive in the face of a range of challenges. These were then documented 

through PV and PP where community researchers planned, filmed, screened and edited 

the indicator information into films and photostories through an iterative process of 

consultation and evaluation with community members. Indicators included how 

communities valued land rights in order to secure access to key resources, but also the 

ability to use new technologies in order to adapt to the challenges of an increasingly 

globalised world. Information on the status of all the indicators was collected by 

community members and used to identify ‘best practices’, i.e. local solutions which have 

been most successful at allowing communities to survive and thrive (see Table 6.4.6.1). 

These best practices were then documented through the PV and PP process for sharing 

with other communities across the Guiana Shield and policymakers at national and 

international levels. More details are available in Berardi et al. (2013), Mistry et al. 

(2015) and Berardi et al. (2015). 

Table 6.4.6.1: Themes of the community owned solutions, or ‘best practices’ identified 

by each community. 

Communities Local community owned solutions 

North Rupununi, Guyana Traditional fishing practices 

Traditional cultural transmission 

Community radio 

Traditional farming techniques 

Local civil society organization 

Self-help practices 

Antecume Pata, French Guiana Traditional fishing practices 

Katoonarib, Guyana Forest island management 

Kavanayén, Venezuela Tourism cooperative 

Kwamalasamutu, Suriname Two-farm traditional system 

Laguna Colorada, Colombia Traditional cultural transmission 

Maturuca, Brazil Cattle raising to assert land rights 

 

It is important to note here that the actual indicators and associated data collected 

through the community-led process focused on issues and practices that were of concern 

to the communities themselves, rather than the interests of external biodiversity 

scientists or policy makers. Indigenous communities highlighted indicators pertaining to 

land-rights, and access to key forest and river resources as essential to their existence. 

They identified the ability to continue with traditional rotational farming practices and the 

maintenance of a diversity of crops as important characteristics for giving them flexibility 

in a highly variable and unpredictable environment. They showed that indicators of 

community cohesion and self-help practices allowed them to function ideally in a 

situation of resource scarcity. They highlighted how advanced information and 

communication technologies allowed them to adapt to changing environmental 

conditions. But they also illustrated a range of indicators on how maintaining traditional 

culture and identity allowed them to resist deleterious change. Finally, they showed how 

partnerships with a range of organizations have enabled them to strengthen their 



   

251 

 

responses in a range of initiatives, including the management of endangered species, 

such as the Arapaima gigas, the largest scaled freshwater fish species in South America.  

Although the indicator selection on data recording did not fit neatly into the criteria often 

required for biodiversity monitoring and management (e.g. there were no indicators that 

focused on species abundance and distribution), the approach strongly suggests that 

addressing the concerns of Indigenous communities for maintaining their traditional 

livelihoods will have an indirect impact of also maintaining the natural habitats and 

species that biodiversity monitoring experts are so concerned with counting and 

preserving. Satellite data published on Global Forest Watch (Hansen et al., 2013) show 

almost intact forest cover and negligible deforestation over the 10 years within the 

immediate surroundings of the Indigenous communities with whom Project COBRA has 

worked. This is corroborated with other studies in the Amazon comparing Indigenous and 

non-Indigenous lands such as Nepstad et al. (2006) and Walker et al. (2014). The 

reasons why Indigenous territories seem to have higher levels of environmental 

protection are complex and may not always be linked to Indigenous cultures. For 

example, Indigenous territories tend to suffer from poor transport infrastructure, which 

makes the commercialisation and unsustainable exploitation of natural resources more 

difficult compared to better connected non-Indigenous areas. However, in our work, the 

overriding perception is that the identity and livelihoods of the Indigenous communities 

we engaged with were intimately linked with their local natural environment. As opposed 

to non-Indigenous people, community members felt that they had ‘nowhere else to go’ - 

if they unsustainably mismanaged their territories and were forced to leave, or ‘sold out’ 

to commercial interests, then they would lose everything: their livelihoods; their identity; 

their culture; and even their lives. Thus, identifying and sharing community owned 

solutions that strengthened the cohesiveness and cultures of Indigenous people more 

often than not has the indirect outcome of also protecting the local environment.  

Successful Outcomes 

Project COBRA has demonstrated that participatory approaches that allow local 

communities to identify, record and share what matters to them ought to be an essential 

component of effective natural resource management and biodiversity conservation. The 

participatory approaches used in Project COBRA not only engaged people directly in the 

research process, but also supported self-representation, encouraged reflection, 

collective involvement and empowered the individuals that are directly affected, and can 

react to habitat degradation and biodiversity loss. Supporting Indigenous communities in 

identifying and sharing their own solutions to conservation challenges constitutes one of 

the most ethically appropriate frameworks for research and interventions within 

Indigenous communities. Communities are becoming aware that the solutions to their 

challenges do not lie exclusively in the hands of professional experts, but also in people 

just like them. 

 

6.4.7 National Program for Biodiversity Monitoring, Brazil 

The Brazilian government, through the Ministry of Environment and the agency for 

biodiversity conservation and protected areas, Instituto Chico Mendes de Conservação da 

Biodiversidade (ICMBio), has recently launched the National Program for Biodiversity 

Monitoring in protected areas. The 320 federal protected areas were design to conserve 

biodiversity under the management responsibility of ICMBio, and are categorized as 

conservation units that allow the use of natural resources, mainly by local communities, 

and conservation units that are strictly for biodiversity protection. 

To improve their management capacity, the agency has been implementing different 

monitoring schemes addressing land cover change and management effectiveness of 

protected areas. The third pillar of information to manage the areas, however, was 

lacking until 2012 when the Program for Biodiversity Monitoring was established. 
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The program was built during three years of cooperation with the Deutsche Gesellschaft 

für Internationale Zusammenarbeit (GIZ), the Gordon and Betty Moore Foundation and 

Instituto de Pesquisas Ecológicas, using the lessons learned from 10 years of previous 

pilot programs, local initiatives and attempts to implement government-led biodiversity 

monitoring. Two major frontlines compose the program: on the one hand, it intends to 

provide continuous and systematic biodiversity information to support the management 

of the National System of Protected Areas; on the other hand, it was structured to also 

provide biodiversity information to support decisions at the level of single protected 

areas. 

To answer the request at the national scale, the program is based on the information of a 

few, simple-to-collect biological indicators of biodiversity that every protected area has to 

provide through a standardized methodology that is easy to implement. Here, the 

program considers the involvement of local people in data collection, after participating in 

capacity-building courses. Therefore, representatives of communities that live in 

protected areas are participating in a national government-led program that provides 

information to manage biodiversity. 

At the level of single protected areas, the program is open to a more comprehensive and 

intense involvement of local communities. In each protected area participating in the 

Program, communities participated in the design of the whole monitoring scheme. 

Together with the local staff they decide on the component of biodiversity that should be 

monitored, provide information to support and validate the design of the monitoring 

methodologies, select communities and members that participate, and collect the data. 

As such, the information produced is relevant for the local management of biodiversity 

both for the government as well as for communities living in the protected areas. 

Moreover, the core methods developed in one protected area have the potential to be 

adopted in others allowing for regional analysis and decision-making at broader scales.  

Approaches Used and Data Collected 

Given the size of the country, the elevated number and extension of protected areas, and 

the relative lack of financial and human resources to monitor biodiversity, the program 

opted to simplify things as much as possible since its design. 

The two approaches developed in the Program are complementary and based on the 

principles that monitoring should be feasible to implement, and therefore, able to involve 

as many people as possible, independent of the level of formal education (Pereira et al., 

2013b). Hence, four biological indicators, which provide complementary information on 

biodiversity, were selected to be monitored in every protected area engaging in the 

program: medium and large mammals, large birds, arboreal plants, and frugivorous 

butterflies. Simple methods were developed that allow local people to collect data on the 

number of mammals, birds, and butterflies, and the size of plants (Nobre et al., 2014). 

These data are used to estimate parameters of population, community structure and 

function. The program also designed two additional modules for each indicator that 

generate more complex information that can be adopted in protected areas that have 

partners willing to contribute, such as universities and research NGOs. 

The technology for monitoring is intended to be applicable to as wide a variety of 

contexts as possible. Therefore, the option, in the first phase, was to use paper and 

pencil to record data. The program developed supporting material to facilitate the 

adoption and use of data collection protocols. The guides of data collection and 

identification were designed to facilitate the manipulation of local people and the 

information in them was expressed in drawings and photographs, instead of using words. 

Videos were also made to show the technical details of the data collection. Whenever 

communities in the protected areas are willing to participate in this part of the program, 

there are also capacity-building courses oriented to this audience (Santos et al., 2014). 
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The local approach was built on a series of meetings and workshops with community 

leaders and other members to design the monitoring. Although there were differences in 

the process depending on the protected area, the general overview and guidelines were 

maintained. The selection of monitoring target was defined after defining a question 

relevant to the management of biodiversity at the scale of the protected area. Usually, 

communities and government staff prioritized those targets that were included in the 

formal management agreement instruments of the protected areas (i.e. the management 

plan, the management agreement between communities living in protected areas of 

sustainable use and the state, and the term of commitment of communities using 

resources in protected areas of strict protection). Currently, communities in protected 

areas work with the government to monitor the status and use of Brazil nut trees, game 

species, peacock bass (tucunaré), and aquatic chelonians, as well as the effect of logging 

on large mammals and birds. Each monitoring target has specific methodologies, 

instruments, and technologies associated with it. Nevertheless, the methodological 

protocols were carefully developed to collect data with enough quality to support local 

management interventions with significant information. Moreover, a core group of data 

was defined for collection wherever these targets are monitored. 

Successful Outcomes 

The National Program for Biodiversity Monitoring is currently collecting data in 20 federal 

protected areas to provide information to manage the national system of protected 

areas. In addition, there are seven protected areas currently participating in the 

program, all in Amazonia, that are producing monitoring information for the local 

management of biodiversity. People living in communities in these protected areas 

participate in diverse ways and levels of engagement, being an essential part of the 

program. This program is a pioneer in recognizing local knowledge and promoting local 

engagement in a biodiversity monitoring program coordinated by a federal government 

to support local and national scale decision making. As it is now, the program is starting 

to provide nationwide continuous systematic information on trends of animal populations, 

and community structure and function. 

Although the program is still in the first years of implementation, there is a strong effort 

to expand the activities. The Amazon Region Protected Areas Program of the Ministry of 

Environment is adopting the principles, including community involvement and the 

methodologies developed in the National Program for Biodiversity Monitoring. As a 

consequence, ICMBio is planning to include another 20 Amazonian protected areas in 

their program by the end of 2016. Moreover, state governments in Amazonia are 

interested in monitoring biodiversity in their protected areas according to these 

methodologies, and there is also interest in adapting the program for implementation in 

other indigenous lands across the country. In addition, ICMBio is expanding their network 

of collaborators to implement the more complex modules of biodiversity indicators in 

protected areas that already have the basic modules, and to develop a more traditional 

citizen science component. 

 

6.4.8 Nature’s Notebook: USA National Phenology Network 

Nature’s Notebook is led by the USA National Phenology Network (USA-NPN; 

www.usanpn.org), which was established in 2007 by the US Geological Survey in 

collaboration with other governmental and non-governmental organizations. The USA-

NPN is a national-scale science and monitoring initiative focused on phenology – the 

study of seasonal life-cycle events such as leafing, flowering, reproduction, and migration 

– as a tool to understanding how plants, animals, and landscapes respond to 

environmental variation and change. 

Formally launched in 2009, Nature’s Notebook (www.nn.usanpn.org) is a ground-based, 

multi-taxa phenology observing program, which enables both professional and volunteer 

participants (typically contributory citizen science) across the USA to observe and record 

http://www.usanpn.org/
http://www.usanpn.org/
file:///C:/Users/drigo002/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/A2TVGAWI/www.usanpn.org
file:///C:/Users/drigo002/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/A2TVGAWI/www.nn.usanpn.org


   

254 

 

phenology of plants and animals according to standardized, published protocols via web 

or mobile applications. 

The success of Nature’s Notebook and the ability of USA-NPN to deliver a high-quality 

multi-taxa data resource hinges on the activity of the participants. Approximately half of 

the participants are volunteers. Therefore, without the efforts of the thousands of citizen 

scientists, it would be impossible to provide such a rich, deep phenology data resource. 

Approaches Used and Data Collected 

Participants in Nature’s Notebook submit observations on the status of several 

phenological stages, or phenophases, during repeated visits over the course of a season 

(Denny et al., 2014). Status monitoring involves evaluating phenophase status (e.g., the 

presence or absence of leaves, flowers, or fruits for plants, and mating, feeding, or 

movement for animals) during a series of repeated observations over the course of a 

season. Observations are expressed as the question, “Do you see [phenophase]?” to 

which the observer answers “yes”, “no”, or “uncertain” for the presence of each 

phenophase. In addition, observers may record the intensity or abundance of each 

phenophase (e.g., number of flowers present, percentage of flowers open, number of 

robins feeding, etc.). The use of status-based monitoring is particularly suitable for 

tropical and sub-tropical systems where there is little seasonality, or where seasonal 

drivers typically considered important in more temperate regions, such as accumulation 

of warmth during spring, are unknown or of less importance. Status-based monitoring 

captures repeated bouts of flowering or leaf-out over the course of the growing season, 

which is common in tropical and aseasonal systems. 

The data collected via Nature’s Notebook directly supports the “phenology” EBV, and is 

suitable for documenting changes in species phenology as well as in synchrony of states 

or events between or among species (e.g. plant-pollinator interactions). Although 

primarily focussed on temperate climates of the coterminous USA, this type of citizen-

based monitoring approach could easily be transferred to tropical forests. 

Successful Outcomes 

Nearly 7 million records (as of early 2016) of plant and animal phenology have been 

contributed to Nature’s Notebook since the launch of the program in 2009, representing 

hundreds of species of plants and animals at over 8000 unique locations across the USA. 

These data have resulted in 21 peer-reviewed publications to-date 

(http://www.usanpn.org/biblio/%20contemporary-data) with several more under 

development. For example, data from the network have been used to improve models 

that predict onset of seasonal activity of important tree species in the eastern United 

States (Jeong et al., 2013), which has implications for local activities and economies, 

such as maple syrup production, honey production, allergy seasons, bird migrations, 

cultural festivals and harvesting of native herbs. Other models using data from the 

network indicated that 2012 was the earliest spring since 1900 (Ault et al., 2013), and 

illustrated how such a “false spring” increased susceptibility of agricultural crops (such as 

apples and grapes in Michigan) to frost, and may have exacerbated impacts of summer 

drought on regional agricultural productivity. 

 

6.4.9 Majete Wildlife Reserve, Malawi 

The 70,000 ha Majete Wildlife Reserve (MWR), at the tail-end of the Rift valley in 

southern Malawi, provides a home for many of Africa’s iconic species: leopards, 

elephants, water buffalo, black rhinos, sable antelopes, eland, lions, leopards, and 

hyenas, among others. MWR was originally established as a game reserve in the 

southern section of the Great Rift Valley in 1955, and poaching became rampant during 

the late 1980s and 1990s. In March 2003, a decision was made to rehabilitate MWR 

through the establishment of a public-private partnership, between the Government of 

Malawi (Department of National Parks & Wildlife) and African Parks PTY Ltd. Since then, 

http://www.usanpn.org/biblio/%20contemporary-data
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millions of dollars have gone into developing the reserve’s infrastructure, primarily for 

ecotourism purposes and building up its staff component, with a current total of 135 full 

time staff, all employed from the surrounding communities. Tourism has been steadily 

increasing since African Parks took over management of the reserve. A 142-kilometer 

(88-mile) electric fence now surrounds the reserve, protecting the original 2,554 animals 

of 14 different species that were reintroduced to the reserve, along with their new 

offspring. Almost 10 years later, the project is gradually moving from its inception and 

rehabilitation phase into a conservation, monitoring and habitat management phase, 

including the provision of water, fire and visitor management, control of alien and 

invasive species, continued re-introduction and monitoring and translocation of animals 

and managing the rare and endangered species. Changes in animal numbers due to high 

breeding success rates and the predicted impact on vegetation brought about by the 

rehabilitation programme now require monitoring and measuring. 

Dr Alison Leslie from the University of Stellenbosch (South Africa) and Earthwatch 

initiated a biodiversity research and monitoring program in 2013 to monitor key species 

and their ecological interactions in Majete Wildlife Reserve in Malawi. 

Approaches Used, Data Collected and Successful Outcomes 

Community-based monitoring and Earthwatch volunteers (i.e. citizen scientists) are being 

used to determine population trends of all 14 reintroduced species within the reserve. 

Fixed-point photography is used to monitor vegetation changes. Waterholes are 

monitored for the development of and an increase in the size of piospheres. Distance 

sampling monitoring, on foot and by vehicle, is undertaken for animal counts, camera 

trapping is conducted to determine presence/absence of species in different areas of the 

reserve and to determine species abundances and scat/dung is collected from herbivores 

and predators to determine the preferred seasonal diet of the various species. 

The biodiversity observation monitoring program is providing data on key biodiversity 

indicators, including the status and trends of species, and identification of potential 

ecological interactions which may limit species response. The research team knew exactly 

how many individuals of what species were introduced (a rare situation) and are 

currently gaining a better understanding as to reproductive rates and population growth 

rates in general. All 14 reintroduced species are doing incredibly well (all species have 

reproduced since re-introduction) and using citizen scientists, Dr Leslie is studying actual 

rates of increase. Currently there are over 200,000 camera photographs of species 

presence/absence (habitat use) in areas of the reserve, which will use citizen scientists 

for identification. Thirty-two waterhole counts are carried out by citizen scientists per 

field season (June-December) totaling 384 hours. Fixed-point photography study is well 

underway with photographs taken every 3 months at 58 sites throughout the reserve, 

totaling 360 photographs per sampling session. Citizen scientists are responsible for 

sorting and collating all photographs. Additionally, citizen scientists undertake 512 hours 

of distance sampling, on foot and by vehicle per fielding season, contributing a huge 

amount of data to the research monitoring programme, which would otherwise be 

impossible to collect. The identification of potential ecological interactions which may 

limit species response include elephant impacts on habitat and habitat selection within 

the reserve, the development of piospheres around waterholes and the high number of 

wild fires. In the future, predator impact on herbivore populations will be studied. 

The abundance, productivity and reproductive success of biological organisms can 

provide an indication of the overall health of an ecosystem. Monitoring of these variables 

provides key information for management decisions and will contribute to the overall 

success of one of Malawi’s largest protected areas, and Malawi’s only “Big 5” reserve. 

Monitoring has already indicated a higher number of elephants than expected and in late 

2016, one of Africa’s largest elephant relocation projects will be undertaken by African 

Parks. Results from this program will ultimately contribute towards a Management Plan 

for MWR, which will be provided to African Parks and the Department of National Parks 

and Wildlife, for implementation. This management plan may also assist other reserves 
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within the country and further afield in the form of suitable monitoring protocols for a 

large number of re-introduced species of both predators and their prey. Additional 

outcomes of the research program include the training of numerous post-graduate 

students (including Malawian citizens), peer reviewed publications and ultimately the 

protection of some of the last remnants of Africa’s eastern Miombo woodland. 

 

6.4.10 Participatory Ecological Monitoring in Madagascar: The Case of 

Lake Alaotra New Protected Area 

The Island of Madagascar (58.7 million hectares) is a biodiversity hotspot due to its 

exceptional rate of endemism and current environmental threats. All 103 species of 

primates (Mittermeier et al., 2006), 98% of amphibians (Glaw and Vences, 2007), 91% 

of reptiles, 52% of birds (Morris and Hawkins, 1998), and 80% of plants are endemic to 

the country. However, since the arrival of humans around 2,350 years ago, Madagascar 

has lost more than 90% of its original forest with a high annual rate of deforestation of 

1.95%/year from 1990 to 2000 and 1.28%/year from 2000 to 2005 (Harper et al., 

2007). Moreover, with a high multidimensional poverty index of 0.41 (Alkire et al., 

2013), about 80% of people live in rural areas (INSTAT, 2010) and rely importantly on 

natural resources to survive. The main pressures on natural resources are slash-and-

burn agriculture, tree felling for firewood and charcoal and illegal timber exploitation, 

causing loss and destruction of natural habitats. Due to lack of resources, the 

government has difficulty in controlling illegal timber exploitation. Therefore, many of the 

species are under serious threat of extinction. 

Participatory ecological monitoring has been deployed by many conservation NGOs to 

help save Madagascar’s wildlife. Lake Alaotra (17°02’-18°10’S, 48°00’-48°40’), where 

the Durrell Wildlife Conservation Trust introduced a participatory ecological monitoring 

approach for the first time in 2000, has been a key pioneering site. With a surface area 

of 20,000 hectares, and surrounded by a further 23,000 hectares of reed beds, Lake 

Alaotra was designated as a Ramsar site in 2003, and after receiving temporary 

protected area status in 2007, it was awarded an official permanent decree of protection 

n° 2015-756 on 23 July 2015 

The main goals for the Lake Alaotra Protected Area are to conserve the lake and marsh 

area, their biodiversity including the Alaotran gentle Lemur Hapalemur alaotrensis, the 

carnivore Salanoia durrelli and indigenous fish and waterbirds, and to maintain the 

provisioning of ecosystem services to sustainably improve human well-being. 

Approaches Used and Data Collected 

Participatory ecological monitoring takes place yearly every rainy season when Lemurs 

and water birds are more active and the water level is high enough for travel by canoe 

(Andrianandrasana et al., 2005). The fieldwork lasts for 3-5 days per village. Monitoring 

teams at each site consist of up to 15 people: 8 villagers, 2 government representatives, 

3 qualified Durrell Wildlife staff (all have university degrees) and 2 local technicians who 

have a secondary school education. Following a preparatory visit, participants are chosen 

at an initial meeting to which all members of the community are invited. Selection criteria 

include detailed knowledge of the marshes, interest in conservation, and literacy. 

Monitoring indicators were chosen with the local community through public village 

meetings. They include key species such as the Alaotran gentle lemur, the 50 species of 

water bird (Langrand, 1995), indigenous fish; the key habitat such as the reed beds and 

lake; and the main threats such as marsh fires, invasion of water hyacinth and snake-

head fish, illegal fishing and rice farming. Indicators also cover some key environmental 

services such as fish productivity and hunting. Field data forms based on those indicators 

were developed with local monitors, authorities and government officials to make sure 

everyone understands the procedures of data collection and reporting. Participants who 

volunteer are paid around $3/person/day, less than the average income from fishing. 



   

257 

 

Since 2002, participating villagers, most of whom have had primary school education, 

have been given training in data collection. 

The monitoring teams are divided into 5 subgroups. Each subgroup has the specific 

objective to observe lemurs and water birds along fixed canoe transects, and map out 

burned marsh areas using base maps and GPS. The subgroups that look at biodiversity 

and threats follow the existing tracks within the marsh area to record the name and 

number of mammals, reptiles and water bird species. They also visit the lake to check 

whether the selected no fishing zones already fenced with phragmites are respected. The 

group that is in charge of the fish productivity survey stays at the port to record the time 

spent by each fisherman and measure and identify the fish caught. They also record the 

type of fishing materials used by each fisherman. At the end of the annual participatory 

ecological monitoring, a big public meeting attended by government officials, local 

authorities and local associations is then organised in each village to discuss results of 

the observation. After some public speeches given by the authorities and government 

representatives that reminds the local people about the laws and the importance of 

natural resources for sustainable development, the monitoring teams give feedback 

about the results of their observation and discuss publicly the illegal activities. These 

review meetings are often animated by public quizzes and traditional dancing. 

Between 2011 and 2016, Durrell has received financial support from the MacArthur 

Foundation, the Helmsley Charitable Trust, the Tusk Trust, the JOAC (Jersey Overseas 

Aid Commission), and the GEF UNDP MRPA (Managed Resources Protected Areas) to 

expand and reinforce participatory ecological monitoring in five sites including Lake 

Alaotra, Menabe dry forests, Lake Ambondrobe, Nosivolo River and Manombo rainy 

forest. The Ministry of the Environment and Forests approved the training of 468 local 

monitors, 96 of them in Alaotra, as well as the provision of uniforms and equipment 

including mobile phones and simple cameras.  

Since April 2011, these local monitors have carried out patrols on a weekly basis to 

observe key species, their habitats and illegal activities within their local management 

area. Overall, the monitoring has provided useful data for decision making and started 

the process of building local pride in the environment as well as the ability to analyze the 

monitoring data locally. 

The monitoring has supported wetland management by guiding amendments to, and 

increasing respect for, a regional fishing convention; by catalysing the transfer of marsh 

management to communities, by stimulating collaboration and good governance; and by 

raising awareness. Monitoring has revealed trends in natural resource management over 

time (e.g., changes in the extent and frequency of devastating annual marsh fires) and 

provided valuable fishery data. Surveys have also provided information on the levels of 

hunting of water birds and lemurs and the areas of lemur occupancy. 

Data collected through participatory ecological monitoring has indicated stability in fish 

productivity from 0.23 kg/person/hour in 2002 to 0.25 kg/person/hour in 2005. That 

could be an impact of the reduction of marsh burning from 7,300 hectares in 2000 to 

2,500 hectares in 2003 (Andrianandrasana et al., 2005). That stability was followed by a 

significant decrease in fish productivity until 0.09kg/person/hour in 2009, which has been 

confirmed by the massive decline in fish production from 2000 tonnes/year in 2004 to 

around 800 in 2011 (DRPRH, 2013)(DRPRH, 2013). Fish production and marsh burning 

may depend not only on overfishing and illegal rice farming but also on quantity of 

rainfall, climate change, and immigration and water quality issues. In addition to the lack 

of control of the use of illegal fishing gear, it seems that some of the more than 10,000 

mosquito nets distributed in the area between 2010 and 2012 for reduction of malaria 

control have been used for fishing. At night, according to local monitors’ reports, at least 

10 seine fishing nets are still operated on the lake. Due to lack of resources and 

personnel, it is difficult to apply the national fishing regulations and the local fishing 

convention known as ‘dinan’ny jono’, which bans fishing of Tilapia less than 13cm length, 
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Ciprinus carpio less than 15cm and eels less than 45cm. Furthermore, enforcement of the 

annual closed fishing season (15 November to 15 January) is often difficult especially if 

this coincides with political campaigning activity. 

Successful Outcomes 

The data collected through participatory ecological monitoring and local patrols are 

robust and have contributed to an understanding of the changes that have occurred 

across all the sites including Lake Alaotra. Contributions have been made to data on 

species populations and species traits as well as ecosystem structure through habitat 

monitoring. The data have also helped to develop management plans at each site and 

facilitated discussions during the process of developing management structures. The 

monitoring approach has contributed to achieving the government’s objectives to expand 

the size of protected areas from 1.7 million hectares to six million hectares, most of 

which are under IUCN category V and VI that require the involvement of the local 

community in their management. In particular, Lake Alaotra, Menabe dry forest and 

Nosivolo River, and Lake Ambondrobe have become part of the official New Protected 

Areas, and have substantially succeeded in involving local people in their management. 

The approach has worked well both in terms of involving villagers in the process of 

conserving biodiversity and improving collaboration between the communities and the 

local authorities responsible for sustainable management of natural resources. Although 

local monitors report on illegal activities, law enforcement is lacking and there is a little 

evidence of follow-through on these reports. This has had a negative effect on the 

reputation of the local monitors and dampened their enthusiasm for the hard work 

required to collect the data. The lack of law enforcement has also meant that there has 

been insufficient evidence to demonstrate the effectiveness of the participatory ecological 

monitoring approach at times although some positive changes of local people’s attitudes 

are still evident. Overall, determining how best to monitor the effectiveness of the 

participatory approach remains an ongoing issue. 

 

6.4.11 Community-led mangrove conservation and restoration in Gazi Bay, 

southern Kenya 

For many coastal communities, such as those living around Gazi Bay in Kenya, mangrove 

ecosystems provide key services such as firewood and building poles, nursery provision 

for fish, coastal protection and opportunities for tourism. The forests also generate 

regional and global benefits, by protecting neighboring ecosystems such as coral reefs 

and through their exceptional ability to trap and sequester carbon, mitigating climate 

change. Whilst the mangroves of Gazi Bay have supported people for millennia, current 

patterns of use are unsustainable, with projections based on business as usual, 

suggesting that more than 40% of mangrove forests in southern Kenya will be lost in the 

next twenty years (Huxham et al., 2015). 

A community-led mangrove conservation, restoration and research project is being led by 

Professor Mark Huxham of Edinburgh Napier University in partnership with Earthwatch 

Institute, James Kairo of the Kenya Marine and Fisheries Research Institute, Dr Martin 

Skov of Bangor University and the Kenya Forest Service. The aim of the project is to help 

sustain the supply of mangrove goods and services by linking mangrove management 

with direct community benefit. In particular, the project is pioneering the use of carbon 

credits as a new way to fund mangrove conservation and social development in the area, 

and has used scientific research conducted by international and local scientists and 

volunteers to underpin this work. Participants in the project include local stakeholders, 

students and early career scientists from Africa and Asia, corporate employees from 

major international companies, and self-funded volunteers recruited by Earthwatch. The 

engagement of a wide range of people and the building of trust over many years has 

proved critical to long term project success. 
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Approaches Used and Data Collected 

In 2003, work began to research techniques to restore mangroves and associated marine 

ecosystems and to evaluate the carbon stocks they hold. In collaboration with 

Earthwatch, 253 individuals from 48 countries have taken part in the research and 

conservation activities. Tasks have included: 

● planting trees as part of experimental studies and for general conservation and 

restoration purposes - over twenty thousand mangrove trees have been planted 

and measured over 20 years; 

● monitoring established experimental stands to measure how trees are growing 

and surviving and which species combinations are best suited for restoration; 

and 

● measuring the amounts of carbon accumulated above and below ground by 

different species of trees. 

 

These data have led to a greater understanding of mangrove forests and their 

management – including effective restoration. The work has helped to clarify the role of 

mangroves in storing carbon and has used experiments to measure carbon losses arising 

from deforestation. The Mikoko Pamoja initiative (‘Mangroves Together’ in Kiswahili) was 

launched in 2009 to apply this research and use payments for ecosystem services 

(specifically, payments for carbon credits) to safeguard conservation gains and improve 

the quality of life of the local community. This research has led to the development of the 

first community mangrove conservation project to be funded by the voluntary carbon 

market, after gaining formal accreditation to sell carbon credits through the charity Plan 

Vivo. This project involves collaboration between local, national and international bodies: 

● The Mikoko Pamoja Community Organization is run by nominated community 

representatives from Gazi Bay; all expenditure of project funds on local projects 

is determined following full community consultation. 

● The Mikoko Pamoja Steering Group provides technical support and consists of 

staff from the Kenya Marine and Fisheries Research Institute, the Kenya Forest 

Service, the Tidal Forests of Kenya Project, Edinburgh Napier University and 

Earthwatch. 

● The Association for Coastal Ecosystem Services is a charity registered in 

Scotland that facilitates the transfer of international funds, organises charitable 

fundraising and education and reports to the Plan Vivo Foundation (the 

organization that grants official accreditation of carbon credits). 

 

Successful Outcomes 

Specific project outcomes include: generation of new scientific knowledge in the form of 

15 peer reviewed publications; increased technical skills and income to local people 

employed to assist with carrying out project functions; enriched opportunities for women 

through their representation within the village committee; training to 30 local school 

students and four master’s students each year; investment in 12 future conservation 

leaders from developing countries each year through immersive training programmes 

and mentoring; improving sustainability of local fuel and timber sources through the 

planting of woodlots (which will also provide timber for sale to raise funds for community 

projects); enhancing ecosystem services through the protection of ~120 hectares of 

mangrove forests; locking away 2500 tonnes CO2 per year, derived from avoided 

deforestation, prevented forest degradation and new planting; providing an income of 

~£8000 each year from carbon credit sales, which is used to run the project and support 

community development; investing in community-led local livelihood projects such as 

beekeeping and tourism. 

This pioneering carbon project is a triple win for community livelihoods, biodiversity 

conservation and climate change mitigation. More generally, the project at Gazi Bay has 

provided a greater understanding of sustainable mangrove utilization, and demonstrated 
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the opportunities for community-based conservation of mangrove forests supported in-

part by carbon credits. There is huge potential (and interest in) this model in Kenya and 

elsewhere, and the intention is to act as a catalyst and support for similar projects. The 

project has established a regional expert network to disseminate knowledge and help 

support similar initiatives: the East African Forum for Payments for Ecosystem Services, 

www.eafpes.org. Expansion at both the current site and other sites along the coastline 

will help to generate security in the face of fluctuating carbon markets, and bring benefits 

for local livelihoods, biodiversity and climate change mitigation. 

 

6.4.12 Community-based Monitoring of Carbon Stocks for REDD+, Asian 

countries 

Climate change has been identified as one of the biggest threats to society and our 

environment as a whole. Reducing CO2 emissions can mitigate the threat of climate 

change. REDD+ is a proposed financial mechanism that can provide incentives to 

developing countries to reduce CO2 emissions and increase CO2 removal from the 

atmosphere by forests (Ghazoul et al., 2010). A “Monitoring and Measurement, Reporting 

and Verification” (MRV) system is needed for REDD+. Monitoring of forest carbon stocks 

can involve both remote sensing and in-situ measurement. The United Nations 

Framework Convention on Climate Change recognises that REDD+ may, in some cases, 

harm biodiversity and local livelihoods and has asked for safeguards to be implemented 

to ensure that REDD+ is consistent with the conservation of natural forests and biological 

diversity (Gardner et al., 2012). The Convention for Biological Diversity (CBD) is likewise 

calling for countries to identify potential indicators and monitoring mechanisms for 

assessing the biodiversity impacts of REDD+. 

According to the REDD+ monitoring and implementation requirements, it is important to 

involve local community groups and societies to carry out forest monitoring, in particular, 

if there is any prospect of payment and credits for environmental services. There are 

several reasons why local communities should be involved in monitoring forest carbon 

stocks and biodiversity for REDD+ (Larrazábal et al., 2012; Boissière et al., 2014). 

Firstly, it is just and fair that local communities are informed of, and invited to participate 

in, activities pertaining to the forest areas that are central to their livelihoods (Skutsch et 

al., 2011; Danielsen et al., 2013; Butt et al., 2015). Secondly, it can help to address the 

concerns of local people that their existing forest use rights and benefits will not be 

undermined by top-down REDD+ implementation (Burgess et al., 2010). Thirdly, the 

participation of local communities can help link the monitoring to decision-making and 

this can lead to increased local forest management capacities (Gibson et al., 2005; 

Danielsen et al., 2007; Pratihast et al., 2013). 

The role of community monitoring for REDD+ has been explored in several projects, 

including K:TGAL (Kyoto: Think Global, Act Local30; Skutsch, 2011), Land use and climate 

change interactions in Central Vietnam (LUCCi) and I-REDD+ (Impacts of Reducing 

Emissions from Deforestation and Forest Degradation and Enhancing Carbon Stocks) 

projects. This case study describes the approaches used by the I-REDD+ project, which 

was funded by the EU and led by the University of Copenhagen, NORDECO and partner 

organisations during 2010-201431. One component of this project compared community-

based and professional forest monitoring of forest biomass and biodiversity in forested 

landscapes in six field sites in China, Indonesia, Laos and Vietnam (Brofeldt et al., 2014). 

 

 

                                           
30

 http://www.communitycarbonforestry.org 
31

 http://www.i-redd.eu; www.monitoringmatters.org 
3 

http://www.lucci-vietnam.info/ 
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Approaches Used and Data Collected 

The I-REDD+ project worked with local partner organisations which, in the spirit of Free, 

Prior and Informed Consent (United Nations, 2008), contacted local communities living 

close to the forest and dependent upon forest resources for their livelihood. Communities 

choosing to become involved in the project participated in mapping and zoning of the 

local forest and proposed a stratification that reflected forest type and tree density 

(Brofeldt et al., 2014). A network of permanent circular plots for structured random 

sampling was established within each stratum. After a short training session, the 

community members established plots and measured all trees with diameter at breast 

height (dbh) > 10 cm within those plots. Some of the participating communities agreed 

to try to identify the species of all the measured trees. Carbon estimates were calculated 

using the dbh measurements and appropriate allometric equations. Professional foresters 

measured the same trees and the results of community monitors and professional 

foresters were compared. 

Successful Outcomes 

The I-REDD+ project built, to a large extent, on the lessons learned in the K:TGAL 

project, which had shown that local communities using hand-held computers could 

monitor forest carbon stocks in relatively simple-structured forests (Peters-Guarin and 

McCall, 2011). The I-REDD+ project took this a step further by excluding the use of 

computers in the field and assessing carbon stocks of complex, species-rich old-growth 

forests (Danielsen et al., 2011, 2013). The rationale was that reliance on the use of 

hand-held computers (Peters-Guarin and McCall, 2011; Pratihast et al., 2012) may 

represent a constraint to community involvement and the broad-scale implementation of 

local community monitoring of forest condition because capacity is limited in some 

communities (Howell, 2012). Employing low-tech field approaches, such as recording of 

data using pen and paper, measuring using ropes marked at relevant points, and utilizing 

other feasible protocols for local communities, may greatly enhance the application of the 

local approach to monitoring forest condition. The results showed that members of rural 

communities can monitor and measure levels of carbon stock even in complex, old-

growth forests without the use of electronic devices (Brofeldt et al., 2014; Torres and 

Skutsch, 2015). An overview of who is involved in community-based monitoring of 

forests and where they are working is provided on the Forest COMPASS website32 .  

Combining REDD+ and Biodiversity Monitoring 

There has been limited attention on how local communities can become involved in 

monitoring the biodiversity impacts of REDD+ (Gardner, 2010; Gardner et al., 2012; 

Swan, 2012; Enright, 2014; Hawthorne and Boissière, 2014; Latham et al., 2014; McCall 

et al., 2014). A central question is whether data on biodiversity can be collected while 

community members are already gathering carbon stock data. We know of three 

examples of this. Firstly, community members that meet regularly to discuss forest-

related issues such as REDD+, the use of forest products and forest management can be 

encouraged to discuss trends in biodiversity, using the Focus Group Discussion method. 

Focus groups have the potential to provide results that are similar to results obtained 

from monitoring by professional scientist (Danielsen et al., 2014b). Focus groups are 

particularly useful in providing early warnings of changes in biodiversity. Secondly, 

community members can be encouraged to take notes on any encounter with selected 

rare but easily recognisable species (howling gibbons, hornbills heard flying above the 

canopy, calling pheasants, bear markings on trees, etc.; Padmanaba et al., 2013). 

Thirdly, permanent plots for monitoring carbon stocks, as done by community members 

in the K:TGAL and the I-REDD+ projects, can also be used to provide valuable 

biodiversity information. They can be used to provide data on forest type and structure 

(density and size of trees) (Theilade et al., 2015) and, in some cases, even on tree 

species diversity (Zhao et al, 2016). If funding permits, additional biodiversity monitoring 
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activities can be undertaken, similar to the activities described in other sections of this 

chapter. See section 8 for synergies between biodiversity monitoring and REDD+. 

 

6.4.13 Community-based Monitoring of Activity Data for REDD+, Kafa 

Biosphere Reserve, Ethiopia 

The Kafa Biosphere Reserve is located in the south western part of Ethiopia. Expanding 

around 700K ha in size, the reserve achieved UNESCO recognition in 2011. This area 

contains some of the last remaining forests in Ethiopia, which are comprised of large 

areas of mountainous afromontane cloud forest (Pratihast et al., 2014). Kafa Biosphere 

Reserve is very important from an ecosystem service point of view as the wild coffee 

Arabica originates in this area. Wild coffee, as well as high value spices and honey, 

obtained from these forests are important for the livelihoods of the local communities. 

However, increasing pressure from the expanding Small-holder agriculture continues to 

threaten the forest (Pratihast et al., 2014) while, at the same time, climate change could 

drastically reduce the areas where wild coffee can grow in the future (Davis et al., 2012). 

Community-based forest monitoring in the context of REDD+ is one mechanism for 

safeguarding local livelihoods, especially if this activity is linked to an incentive scheme 

such as payments or credits (Pratihast et al., 2013). Community-based monitoring can 

also play an important role in contributing to national-level forest monitoring systems 

(NFMS) for MRV as outlined in the previous case study (section 6.4.12), which focused on 

carbon stock data. This case study considers activity data referring to forest area change 

(generally measured in hectares) for MRV purposes. This is normally undertaken using 

remote sensing in combination with field measurements by professional surveyors. The 

main concern with community involvement in MRV is the lack of confidence in data 

collection procedures and unknown quality of such data set for their integration in the 

NFMS. To this aim, Arun Pratihast (and colleagues) at Wageningen University & 

Research, Mesfin Tekle of the Nature and Biodiversity Conservation Union in Ethiopia and 

community members made an approach to combine the use of high-resolution satellite 

imagery and forestry expert measurements to assess the accuracy and consistency of 

community monitoring data in Kafa Biosphere Reserves, Ethiopia in terms of spatial, 

temporal and thematic category. The results of the study shows that the local 

communities were capable of describing processes of change associated with 

deforestation, forest degradation and clearly demonstrated the value of community 

involvement in forest monitoring of activity data. Full details of the study can be found in 

Pratihast et al. (2014).  

Approaches Used and Data Collected 

The data collection task was undertaken by 30 community members. These community 

members were recruited within the frame of the project entitled “Climate Protection and 

Primary Forest Preservation—A Management Model using the Wild Coffee Forests in 

Ethiopia as an Example”. All selected community members were educated personnel, to a 

minimum of secondary level high school, and some fundamental understanding on forest 

management and conservation in the Kafa Biosphere Reserve. These community 

members were concurrently involved in activities such as the development of ecotourism, 

education and reforestation activities, and therefore had some basic experience of forest 

management. By ensuring that recruitment was geographically balanced across the 10 

administrative districts in the area, a strong community representation was created.  

Two mechanisms for data collection were employed: paper-based forms with separate 

GPS devices to capture location; and mobile phones using a survey-style app built from 

the open source ODK (Open Data Kit) Collect. Community members were trained through 

events that took place before and during the forest monitoring activities, and user-

friendly training materials were provided. The community members collected data from 
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755 locations between January 2012 to December 2013; paper forms were used in 2012 

while a shift to mobile phone data collection occurred in 2013. 

Unlike other examples of community-based REDD+ projects (Danielsen et al., 2011, 

2013; Shrestha et al., 2014), which have focused on measuring carbon stocks, the data 

collection here was centred on the monitoring of forest change processes. Three main 

categories of data were collected: 

 Spatial category: Three aspects of the spatial category of the local experts’ data 

were collected, including categorical location information, GPS location 

information and the estimated size of forest change. The deforestation areas 

were mapped on the ground while the central location and area affected were 

recorded for degradation. 

 Temporal category: The time of forest change (day, month and year) was 

acquired under this category. 

 Thematic category: The type of change (deforestation, degradation, 

reforestation), drivers of change (agricultural expansion, settlement expansion, 

charcoal and firewood extraction, intensive coffee cultivation, timber harvesting 

and natural disasters), with documentation consisting of photographs taken in 

four cardinal directions, were collected in this category. 

 

As mentioned previously, a key component of this study was the assessment of data 

quality, in particular for MRV purposes and for potential scaling up to national level 

reporting. An accuracy assessment was performed across all categories of community 

acquired data sets. Field reference data were collected by a team of local and regional 

experts who revisited 140 randomly chosen sites at the end of 2013. A time series of 

high resolution imagery between 2005 and 2013 (including pan-sharpened SPOT and 

RapidEye images) were used to manually digitize areas and to identify the time of forest 

change. 

Outcomes 

In general, the results of the study show that community members were able to 

document forest change processes, where accuracy varied depending on the category of 

data collected. The spatial accuracy varied between 71 to 92% for different spatial 

categorizations of change (Administrative units, Distance to nearest village, Distance to 

nearest road and Distance to core forest). The positional accuracy (GPS errors) reported 

by community members compared with those reported in the reference data showed a 

slight systematic error on the order of 0.65 m.  

For large change areas, i.e. greater than 2 ha, the community members systematically 

underestimated the size of the change. For the time of change, 33% of deforestation 

events were accurately reported when compared to the remote sensing analysis while 

45% was reported 1 to 2 years later than indicated by remote sensing. Forest 

degradation, on the other hand, was reported earlier than remote sensing for 54% of 

degradation occurrences, reflecting the advantage of a ground-based approach over 

remote sensing. Finally, recognition of the type of change and the presence/absence of 

forest were documented with high overall accuracy (83 to 94%) while drivers of forest 

change, which were more complex to assess, were still documented to a reasonable 

accuracy of 69%, assuming that the experts monitoring represented the “truth”. 

Relevance for Earth Observation  

The data collected through community-based monitoring represents a complementary 

data stream to remote sensing observation, where the latter will continue to have a clear 

role to play in forest change monitoring and detection. Remote sensing requires ground-

based data for calibration and validation; community-based monitoring represents a cost 

effective way to acquire in-situ data on both forest cover and change over time. 
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However, it can also provide additional information on drivers of change and other land 

use information that is beyond the capabilities of remote sensing. In addition to land 

cover and land use (Table 6.3.1), this study documented drivers of change, which partly 

addresses the EBV of disturbance regime within the broader class of ecosystem function. 

It might also be possible to extend the types of data collected to other environmental 

monitoring variables such as biodiversity, plant species type and phenology. Thus, the 

integration of other environmental monitoring variables may have potential for including 

community-based monitoring in monitoring and benefit-sharing systems in REDD+ 

projects (Visseren-Hamakers et al., 2012).  

 

6.4.14 Community-Based Monitoring of Philippine Protected Areas 

Until the 1990s, the most protected areas in the Philippines existed only on paper. In 

1992, a new protected area act, the National Integrated Protected Areas System Act 

(DENR, 1992), allowed for community participation in management of protected areas. In 

1996, the World Bank and Danish aid (DANIDA) agreed to assist the Philippine 

government to operationalize the new act, and for three years they worked together to 

develop a simple scheme for monitoring protected areas based on observations 

undertaken and interpreted by community-members and protected area rangers.  

Representatives of the local communities in each community helped the government 

select community participants on the basis of their interest in and experience with forest 

resources. The community participants included some of the most experienced collectors 

of forest products in each community. Most of the community participants had attended 

only primary school and had a limited ability to read and write; however, in each 

community there was at least one literate participant. 

The scheme was intended to identify trends in important biodiversity assets and to use 

these trends to guide management action in protected areas. It was also intended to 

enhance participation of protected-area communities in management of the protected 

area.  

The scheme was developed by the government’s Biodiversity Management Bureau in 

cooperation with Nordic Foundation for Development and Ecology (NORDECO). It is a 

category 4 Collaborative Monitoring Scheme with Local Data Interpretation (sensu 

Danielsen et al., 2009). Foreign support to the scheme ceased in 2001 but the scheme 

continues at most of the sites where it was established. 

Approaches Used and Data Collected 

Data were collected by government rangers and volunteer community members. The aim 

of this monitoring system is to ensure better management and the involvement of local 

people rather than data-based falsification of scientific hypotheses concerning variation in 

biodiversity values. By allowing park staff to carry out the field assessments, this 

monitoring encourages them out of their offices and into the field and improves their 

understanding of park issues and thus their capacity for park management (Danielsen et 

al., 2000). In each park, monitoring focused on a list of 10–15 taxa and 5–10 signs of 

resource use (usually large terrestrial mammals, easily identifiable birds, crocodiles, 

marine turtles, fish and shellfish). The targets of the monitoring were selected by local 

community members together with protected area staff. Data were collected every 3 

months. Data interpretation was undertaken locally by the protected-area staff and 

community members, and a small report was presented every quarter to the 

Management Council of each protected area. The report included the data set, a list of 

important observations of changes in species and resource use, and a list of proposed 

management interventions with a description of the issue identified, the location, and the 

proposed action to be taken by the protected-area council (Danielsen et al., 2005b). 
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Successful Outcomes 

Before this monitoring scheme was established, there was little collaboration between 

local people and park authorities, and park monitoring was restricted to assessments of 

the quantity of extracted timber (Danielsen et al., 2005b, 2007). As a result of 2.5 years 

of operation of the scheme by 97 rangers and 350 community volunteers, 156 

interventions were undertaken in terrestrial, marine, and freshwater ecosystems across 

1.1 million ha of 8 protected areas in the Philippines (Danielsen et al., 2005b). The 

majority of these interventions were meaningful and justified, 47% targeted the 3 most 

serious threats to biodiversity at the site, and 90% were implemented without external 

support. By ‘‘the most serious threats’’, we mean the human activities with the most 

negative impact on the areas’ conservation values. Based on existing information on each 

park from other sources, the three most serious threats of each site were identified as 

industrial and road development (four sites), logging and timber poaching (four sites), 

small-scale agriculture (four sites), large-scale agriculture (three sites), and commercial 

marine fishing (three sites), along with gathering of non-timber forest and wetland 

products, grazing, wildlife hunting, and quarrying (one site each).  

Many of the interventions were jointly undertaken by community members and the 

management authorities or consisted of local bylaws in support of park management. As 

a result of monitoring, schemes to regulate indigenous resource use were reestablished 

with government recognition in several parks. Monitoring led to more-diversified 

management responses on the part of the authorities, including a more socially 

acceptable and effective approach to enforcement. The findings by the community 

members closely correspond with findings by professional scientists (Danielsen et al., 

2014a). The government has promoted the scheme as a standard management tool in 

protected areas, and it has spread to new sites. In 2012, there were 435 community 

member participants in the scheme (Jensen in litt., 2013; Danielsen, 2016). 

 

6.5 LESSONS LEARNED FROM COMMUNITY- AND 

CITIZEN-BASED MONITORING PROJECTS 

One of the common themes found in the case studies, and certainly expressed in current 

reviews of citizen science (Azavea and SciStarter, 2014; Theobald et al., 2015) revolves 

around balancing the objectives of: 

 increasing contributions to answering research questions pertaining to status and 

trends of key EBVs through accessible regional databases, 

 enabling the application of management decisions based on sound monitoring, 

while 

 maintaining relevance to key local partners and participants through the flexible 

and responsive development of projects that reflect local interests and 

perspectives. 

Achieving potentially divergent goals (i.e. collecting standardized data for top down 

directed goals vs. meeting the identified needs of participants through bottom up project 

design) is, however, possible, as these case studies, and others demonstrate. One key 

approach that is common to most successful projects is that leaders of the monitoring 

program have sought to identify and incorporate benefits or local relevance for the 

different participants with whom they were working. Leveraging communication tools 

that allow for discovery, use or value generation by the participants is clearly a rich 

avenue to explore in fostering benefits for the participants. See, e.g., case studies Project 

COBRA (section 6.4.6), and the Natural Phenology Network (section 6.4.8) for 

communication tools for community-based monitors and citizen monitors, respectively. 
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Many of the case studies illustrate the power of building field research monitoring 

programs that leverage three distinct groups of participants: local community members, 

citizen science monitors (often away from their “homes”), and the field research team 

(scientists, resource managers (e.g. rangers) and often biology students) (see Figure 

6.5.1). 

 

Figure 6.5.1: Synergies between groups of participants in contributing to projects and 

initiatives 

Each of these groups brings important contributions to a successful monitoring program. 

For example, local community members bring knowledge about the environment derived 

from experience that is not otherwise available to the other two groups; citizen science 

monitors can bring additional resources (time, experiences, financing, interest) that 

extend the monitoring, and the research team brings technical expertise, and other 

resources, usually not found in the other two groups. It should be mentioned that there 

is at least one other avenue of support to biodiversity monitoring programs, i.e. the 

engagement of the public from their homes, who lend their time and online resources to 

make observations, review images, detect patterns, etc. that otherwise would overwhelm 

the limited number of highly trained monitoring staff (e.g. Ellwood et al., 2015). 

Zooniverse is one of the best examples of such programs. 

Many of the outcomes identified through the case studies can be attributed to optimizing 

the synergies between community-based monitoring, citizen scientists and the research 

field team. For example, in the Pacaya-Samiria case study in Peru (section 6.4.1), the 

local community brought local knowledge and legitimacy, foreign citizen scientists (e.g. 

Earthwatch volunteers, Operation Wallacea students) brought additional hands in the 

field, enthusiasm, interest and financing, and the field research team (including trained 

Peruvian university students) brought technical know-how, helping to train and direct the 

monitoring programs. Each group contributed unique resources, but also derived 

important values from each of the other groups. In this case, the interest, energy and 

enthusiasm of the citizen scientists enhanced the commitment and attention to the 

monitoring program by the other two groups, as evidenced on teams where the citizen 

scientists were absent. Secondary benefits can emerge from such blended projects. In 
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the Community-Based Monitoring project of Philippine Protected Areas (section 6.4.14), 

the blending of both park rangers and local community members not only increased the 

capacity of both groups in field surveys but enabled the development of a closer working 

relationship between the two groups which had heretofore not existed. 

Successful use of community members or citizen scientists does not require the whole 

blending of these approaches, and most start with one group and then evolve over time. 

For example, in both the Loma Alta (Ecuador) (section 6.4.2) and the Pacaya Samiria 

(Peru) (section 6.4.1) case studies, the projects started by assessing characteristics that 

were of high value to the local community (water in Ecuador, hunted mammals in Peru) 

and then blended in other habitat and biodiversity monitoring subsequently. 

The rest of this section considers a number of key issues relevant to citizen science 

projects and community-based monitoring, including setting up a project; considerations 

around recruitment, training and sustainability; the management and sharing of the data 

collected by the communities and citizen volunteers; the quality of the data, which 

continues to be a key issue within citizen science (Nature, 2015), and mechanisms for 

communication and feedback. Guidance on these issues from the published and grey 

literature are provided along with relevant lessons learned from both the case studies 

and author experiences. 

 

6.5.1 Setting up a project 

A significant number of resources exist for developing citizen science projects, whether to 

start a project of your own or building on what others have done. The same basic 

standards and principles apply to engaging citizens in biodiversity monitoring. Resources 

for developing projects can be found at: 

 http://www.birds.cornell.edu/citscitoolkit/toolkit/manual 

 http://www.ceh.ac.uk/products/publications/documents/citizenscienceguide.pdf 

 http://www.birds.cornell.edu/citscitoolkit/publications/CAISE-PPSR-report-

2009.pdf/view 

A large number of model projects are available from:  

 http://scistarter.com/ 

 http://earthwatch.org/expeditions 

 http://www.birds.cornell.edu/citscitoolkit/projects 

Furthermore, http://www.citsci.org has a platform for developing citizen science projects 

that includes standardized templates and support for data collection, storage and 

mapping, among other features. 

One important consideration when setting up a citizen science project is the desired scale 

of the project. Haklay (2015) reviewed citizen science projects in Europe and found the 

infrastructure needed to scale up from local to regional is significant and often beyond 

the means of many smaller scale organizations. 

 

6.5.2 Recruiting, training and maintaining participants 

Key aspects for successful project development include: 

http://www.birds.cornell.edu/citscitoolkit/toolkit/manual
http://www.ceh.ac.uk/products/publications/documents/citizenscienceguide.pdf
http://www.birds.cornell.edu/citscitoolkit/publications/CAISE-PPSR-report-2009.pdf/view
http://www.birds.cornell.edu/citscitoolkit/publications/CAISE-PPSR-report-2009.pdf/view
http://scistarter.com/
http://earthwatch.org/expeditions
http://www.birds.cornell.edu/citscitoolkit/projects
http://www.citsci.org/
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● identifying the needs, e.g. the numbers, time commitment needed (both total 

amount of hours but also when), the kind of data to be collected, etc.; 

● who the participants will likely be (local community members, visitors, etc.); 

● what the likely motivation for participating is; and, 

● why the research or monitoring goals of the program might be relevant to the 

participants.  

 

Identifying the appropriate communication “tools”, processes and feedback systems is of 

particular importance to keeping the alliance between “project leads” and the 

participants, be they communities or citizen scientists “external” to the region being 

studied. The use of cameras or videos for monitoring can be extended by community 

members to include indicators of specific interest to the monitoring project as well as 

others that may also be of principal interest to the participants (e.g. see the case study 

on Project COBRA in section 6.4.6). 

Projects that focus on community-based (ecosystem) monitoring often emphasize 

sustainable resource management, biodiversity monitoring and greater involvement in 

decision-making at the local level (e.g. community forest reserves, Pacaya Samiria and 

Loma Alta case studies in sections 6.4.1 and 6.4.2). Evans and Guariguata (2008) have 

reviewed many examples of approaches taken in the creation of successful community-

based monitoring of forests. Many if not most rural community members adjacent to 

tropical forests will likely have little formal education, and have little time or financial 

wealth to dedicate to hobbies. Here we assume that the primary motivational factors for 

community participation are clear benefits to them in terms of improved management of 

key resources that they will benefit from - in terms of sustainability and access to these 

resources, jobs, etc., or valuable co-benefits including improved overall surveillance of 

their community lands with the potential of warding off other detrimental incursions on 

their lands. Typically, community-based monitoring initiatives are only successful if they 

are co-designed together with key community members to ensure that the language, 

goals, and end products of the program are internally consistent with the community as 

well as the end users of the data. 

Projects that focus on citizen science monitoring typically include participants that are 

both local and distant to the study area and share an enthusiasm for being outdoors (see 

e.g. the Natural Phenology Network case study in section 6.4.8). These projects are 

directed by external institutions, i.e. scientists, government agencies, etc. The main 

driver for those who are leading these projects is the need for data collection to assess 

status and trends of natural resources of interest, with secondary goals being greater 

education or engagement of the general public. Many (if not most) participants to these 

contributory citizen science projects have above average income (or their parents do) 

and formal education, and dedicate time and resources to nature-based hobbies (e.g. 

birding, hikers, etc.). Typically participants do not directly depend on the biodiversity 

observed for their livelihoods (e.g. Cornell’s Lab of Ornithology Backyard Birds), and their 

primary motivation is to help some management authority or science institution to better 

understand the state of the environment and thereby enable better decision making in a 

way that is consistent with their beliefs. Reflecting the diversity of potential citizen 

science participants is a diversity of motivations including just getting out into nature, 

having fun, meeting other like-minded people, contributing to science, helping monitor 

the state of the planet, etc. 

Capacity building is often an essential need that enables the transfer of methodologies 

and communication across audiences and key stakeholders in such programs. A number 

of organizations are developing modules to train field leaders of citizen science projects. 

Earthwatch Institute trains senior field scientists and staff to successfully lead teams of 

public participants to ensure that project leads get the data they need, and participants 

have a meaningful and safe experience. Building capacity is essential to ensuring that 

both project leads but also the participants have the capability and confidence to carry 
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out the tasks to the level needed for a successful project. The Citizen Science Academy 

trains educators to lead citizen science projects on a number of different kinds of projects 

(citizenscienceacademy.org) including phenology through project Budbust 

(www.budburst.org). 

Finally, a clear understanding of the resources that are needed and available is essential. 

This includes any financial, technological, personnel, and infrastructure resources that 

would enable the project to succeed. Developing and sustaining citizen science projects 

requires a non-trivial amount of resources to succeed. 

6.5.3 Data collection: management and sharing  

The data management plan for programs, which include community and citizen 

participants, needs to emphasize several key components. Several useful resources for 

data management and sharing include: 

 Data Policies for Public Participation in Scientific Research: A Primer, DataONE 

Public Participation in Scientific Research Working Group, August 2013 

    http://www.dataone.org/sites/all/documents/DataPolicyGuide.pdf 

 

 Data Management Guide for Public Participation in Scientific Research, DataONE 

Public Participation in Scientific Research Working Group, February 2013 

    http://www.dataone.org/sites/all/documents/DataONE-PPSR-

DataManagementGuide.pdf 

 

 Primer on Data Management: What you always wanted to know but were afraid 

to ask, Carly Strasser, Robert Cook, William Michener, Amber Budden 

http://www.dataone.org/sites/all/documents/DataONE_BP_Primer_020212.pdf 

 

 Citsci.org, which is an example of a useful data collection, storage and sharing 

platform. See Azavea and Scistarter’s 2014 publication, which summarizes a 

review of platforms at: 

    http://www.azavea.com/index.php/download_file/view/1368/ 

The purposeful sharing of data is a key criterion to be decided early on in the creation of 

a project. For example, will participants have access to their data, to the data of others, 

and how accessible will the data be to partners? What sort of attribution needs to be 

made to the data collectors when data are used and aggregated into other databases?  

It is often thought that the motivation and maintenance of participants in citizen science 

projects can be tied to the relevance they see in the data that they collect. Visualizing 

their own data or the data that citizen scientists collect in some sort of summary format 

against monitoring questions of interest can help keep participants engaged. See 

Sheppard et al. (2014) to see some of the solutions for tagging volunteer-collected data 

as it migrates through databases.  

 

6.5.4 Quality assurance 

Participants can be trained to reliably collect a wide variety of data, covering most of the 

EBVs. Earthwatch supports many projects where scientists are able to train citizen 

scientists to collect trustworthy data on many variables (www.earthwatch.org). Danielsen 

et al. (2014a) studied the similarity in data on status and trends of tropical forests 

collected by both community members and scientists across 34 tropical forest sites and 4 

countries (Madagascar, Nicaragua, Tanzania). In general they found high correlations for 

species counts as well as 5 types of resource use. Their findings concurred with their 

review of previous studies that suggested that community members can in fact report 

file:///C:/Users/drigo002/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/A2TVGAWI/citizenscienceacademy.org
file:///C:/Users/drigo002/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/A2TVGAWI/www.budburst.org
http://www.dataone.org/sites/all/documents/DataPolicyGuide.pdf
http://www.dataone.org/sites/all/documents/DataONE-PPSR-DataManagementGuide.pdf
http://www.dataone.org/sites/all/documents/DataONE-PPSR-DataManagementGuide.pdf
http://www.dataone.org/sites/all/documents/DataONE_BP_Primer_020212.pdf
http://www.azavea.com/index.php/download_file/view/1368/
http://www.earthwatch.org/
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the same data as “scientists”. Discrepancies only occurred when there was a notable 

separation in where samples were collected or if there was a significant time lag between 

data collection efforts. Similar positive correlations between community collected data 

and professional foresters on forest carbon stocks was reported by Brofeldt et al. (2014), 

who looked at 289 plots across four countries in South-East Asia. 

The ability for non-specialists to collect reliable data depends greatly on the amount of 

training, and the kind of oversight and support that is provided. One key factor is the 

degree of confidence that the data collector has in their abilities (Buesching et al., 2014). 

There are several papers which discuss general approaches to training and motivation 

that enhance the quality and consistency of the data collected. See Newman et al. 

(2003); Wiggins et al. (2011); and Buesching et al. (2014) for examples of approaches.  

Initially, citizen science monitoring projects may expect to invest more heavily in having 

“experts” to review the data collected by participants, verifying both outliers and novel 

observations, but also “normal” observations. This initial phase serves to identify problem 

points, enhance training and clarity of data collection tools, as well as building towards 

the next phase, which may include a more automated data quality reviewing process. 

This second phase often takes the shape of post data collection screening tools, whereby 

set criteria are used to identify potential anomalous data points, which can be reviewed 

by experts; atypical observations can then be verified or removed. This second stage 

should be less intensive on the time of the “experts”. 

A third stage for more developed programs (e.g. eBird) leverages models that are built to 

predict future observations against which new observations can be assessed. 

Given that many citizen science programs remain in the first phase of data screening, 

setting appropriate expectations on the investment needed for “experts” to review and 

verify the data is important. This is one positive attribute of large scale programs such as 

iNaturalist and iSpot, which have developed a very large community of reliable observers 

to verify the observations.  

 

6.5.5 Use of technological tools to enhance data collection. 

There are several technology-enabled tools to facilitate the collection and sharing of 

biological observations. By combining mobile observation systems with communities of 

experts, the ability to greatly increase observations by the public is potentially 

unleashed. Given the increase in capable software programmers, ease of web hosting 

and the need for technology-enhanced data collection, storage and sharing, it is not 

surprising that many apps and websites exist to support field data collection, 

interpretation and sharing. It is beyond the scope of this chapter to review the strengths 

and weaknesses of the different programs. Instead, we share information about a small 

number that are well established globally in order to illustrate the potential.  

iNat (www.iNat.org) and iSpot (www.ispotnature.org) are two examples of web and app 

enabled platforms that can be used across much of the globe to record observations that 

have established communities of “experts” who can identify or verify observations. Once 

verified, these observations are uploaded into the Global Biodiversity Information Facility 

(GBIF) where national inventories can access them for their reporting purposes. Whereas 

iNat and iSpot are open to all species, other platforms such as eBird are very much 

focused on specific taxa. In fact, eBird leverages the passion and enthusiasm of birders 

globally and is the single largest contributor of biodiversity observations to GBIF 

(http://ebird.org/content/ebird/news/gbif/). These established platforms have significant 

communities that support them. Their use is further refined by an ability to create one’s 

own projects that help focus on specific regions of interest, including species lists, etc. 

file:///C:/Users/drigo002/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/A2TVGAWI/www.iNat.org
file:///C:/Users/drigo002/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/A2TVGAWI/www.ispotnature.org
http://ebird.org/content/ebird/news/gbif/
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Furthermore, some of these programs can be enhanced by creating versions in local 

languages and tailored to local interests (see http://naturalista.conabio.gob.mx/ for a 

Mexican version of iNaturalist). 

These technological tools are further enhanced by cross-linking to other web programs 

such as the Encyclopedia of Life (http://www.eol.org), which themselves are further 

repositories of information relating to species. For example, EoL has created Traitbank, 

which is a repository of traits associated with species, many of which are EBVs 

(http://eol.org/info/516), and GloBI, which provides access to biotic interaction datasets. 

Finally, there are other platforms that operate at scale or support the development of 

programs that seek scale. For example, there are many country-based platforms such as 

the National Biodiversity Network in the UK and the India Biodiversity Portal among many 

others, taxa-based platforms such as eBird or platforms that clearly contribute to a 

particular EBV such as Nature’s Notebook and Project BudBurst, which focus on 

phenology.  

Moreover, there are platforms that seek to support the development of local initiatives by 

providing common tools, database standards and interfaces. By creating common 

standards, programs such as citsci.org enable local efforts to share their data more 

widely and increase the value of these varied contributions. Most of these platforms 

remain, however, in English and are only accessible to users with smartphones or other 

expensive communication devices. The digital divide remains a real barrier to access.  

Several new approaches are evolving to enable programs with fewer resources or in 

more remote areas to develop apps that are much more tailored to local audiences. Two 

examples of such approaches are OpenDataKit (ODK - http://www.opendatakit.org) at 

the University of Washington, and Sapelli 

(https://www.ucl.ac.uk/excites/software/sapelli), which is built on top of ODK, at the 

Extreme Citizen Science (ExCiteS) lab at University College London 

(http://www.ucl.ac.uk/excites ). The list of example deployments for ODK is extensive, 

with several looking at supporting the monitoring of forests, agricultural fields and water 

sources among other (https://opendatakit.org/about/deployments/). The goal behind 

ODK is to provide relatively straightforward do-it-yourself kits to building data collection 

and sharing tools for local projects. ExCiteS has exciting new programs looking at 

building local apps for forest monitoring using the icon-based interface of Sapelli, which 

can serve both the local community needs, but also the needs of governments and 

corporations as well.  

6.5.6 Communication and feedback 

As emphasized by many of the case examples, communication is key to building and 

maintaining a monitoring program that is relevant to its contributors and users, whether 

they be community members or participants that live external to the location. Identifying 

the appropriate media, the content and the messaging that best engages the different 

audiences can be a challenge given the potential for multiple languages, interests, and 

varying access to different media. As such, this is a vigorous area of research in the field 

of citizen science to identify best practices and provide guidelines.  

The Project COBRA case study (section 6.4.6) explores some interesting approaches to 

creating stories and feedback that enhance the value of the program to local 

communities. For more information, see the Project COBRA Handbook entitled: How to 

Find and Share Community Owned Solutions at: http://projectcobra.org/how-to-find-

and-share-community-owned-solutions. This Handbook, available in English, Spanish, 

Portuguese and French, specifically shows how to engage community members in 

identifying their own indicators of social-ecological viability using participatory visual 

techniques. Examples of participatory films and photostories can be found on the 

MediaGate: http://projectcobra.org/media-gate. 

http://naturalista.conabio.gob.mx/
http://www.eol.org/
http://eol.org/info/516
http://www.opendatakit.org/
https://www.ucl.ac.uk/excites/software/sapelli
http://www.ucl.ac.uk/excites
https://opendatakit.org/about/deployments/
http://projectcobra.org/how-to-find-and-share-community-owned-solutions
http://projectcobra.org/how-to-find-and-share-community-owned-solutions
http://projectcobra.org/how-to-find-and-share-community-owned-solutions
http://projectcobra.org/media-gate
http://projectcobra.org/media-gate
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Creating mechanisms to solicit feedback from key users, and demonstrating to users that 

the program is listening to them is one obvious means of engagement that can be very 

powerful. This requires dedicated investment in communication and feedback, and time 

and resources should not be underestimated. Ultimately the building of a supportive 

community is essential to the long term success of any citizen science project. 

 

6.6 SUMMARY 

This chapter illustrates a small number of approaches that can be undertaken to 

meaningfully engage the broader public in data collection activities that complement and 

contribute to Earth Observations. Many of the examples demonstrate the potential for 

citizen science projects to complement EO, especially around the Essential Biodiversity 

Classes of Species Populations and Species Traits. This is especially true for species 

occurrence and species trait data (e.g. tree dbh), and certain species with well-developed 

methodologies and interest groups (e.g. birds, butterflies, large mammals) or species of 

value to local communities (e.g. hunted or fished species). The spatial and temporal 

distribution of the power of the many people is especially effective and perhaps even 

essential to cover the large landscapes at the resolution necessary to corroborate data 

collected by EO. Programs such as eBird and iNaturalist are already the greatest 

contributors to GBIF observations for many species.  

A number of citizen science programs are developed to cover large scales (e.g. Brazil’s 

National Biodiversity Monitoring Program (section 6.4.7) and the National Phenology 

Network - section 6.4.8), as are the website-enabled programs using apps (e.g. 

iNaturalist; eBird, Naturalista). Moreover, there are large country-wide assessments of 

species occurrence for a number of taxa, particularly in Europe (http://butterfly-

conservation.org/; http://www.ukbms.org/; Pocock et al., 2015). A large country-wide 

citizen science study of decomposition rates coordinated by university scientists was 

found to yield valuable data and was one-quarter the cost of doing the project with paid 

staff.  

Nevertheless the great majority of citizen science projects are focused on a more narrow 

spatial and temporal scale and do require significant investment to be successful. The 

scaling up of citizen science to contribute to national level programs will require several 

key factors. First, careful attention to the needs and interests of the participants (in 

effect co-design for both top down (i.e. data needs) and bottom up (i.e. participant 

needs) benefits is essential to the development of sustained and successful programs. 

Projects that successfully blend different kinds of participants (e.g. community members, 

citizen science monitors, technical monitors and experts) will yield secondary benefits. 

Investment in the professional development or capacity building of key stakeholders 

across regions is essential to ensure standardization of data collection efforts. Careful 

design of data management including data interoperability and the sharing of data across 

the system and users is important to demonstrate the usefulness and value of the 

programs. Finally, citizen science is a social process. Programs that integrate regular 

gatherings and attentive communication with all users can build an army of support and 

contributors that can pay off multi-fold.  

Citizen science and community-based monitoring can be considered as essential inputs to 

the collection of tropical biodiversity data, complementing EO and other tools. Emerging 

techniques and protocols are being developed that should increase the effectiveness and 

reliability of citizen science programs, and we look forward in particular to developments 

that leverage citizen science community-based monitors at scale.  

http://butterfly-conservation.org/
http://butterfly-conservation.org/
http://www.ukbms.org/
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7 REGIONAL BIODIVERSITY NETWORKS 

Mike Gill, Vice-Chair GEO BON / Polar Knowledge Canada 

7.1 INTRODUCTION 

In all regions of the planet, biodiversity change is often driven by multiple and interacting 

drivers occurring at a variety of scales (Pereira et al. 2013; WWF 2014). Similarly, the 

dimensions of biodiversity (e.g. genes, species, and ecosystems) often occur at scales 

beyond the geographic mandate of an individual organization (Scholes et al. 2011). 

Detecting biodiversity change is challenging, due to the significant natural variation, in 

both space and time, found in most biotic variables. This complexity, variation and scale 

demands an adequate and sustained sampling effort in order to have the power to detect 

biodiversity trends (Legg and Nagy 2006; Yoccoz et al. 2001)) and this sampling effort 

must be coupled with intensive experimental research in order to identify the underlying 

drivers of change (Krebs 1991; Nichols and Williams 2006). Without this statistical power 

and understanding of the drivers of change, policy and management responses are blind, 

unable to effectively respond to an unwanted trend. Such an intensive and extensive 

sampling effort can rarely be achieved by a single organization therefore requiring a 

coordinated, collaborative, long-term and scaled effort to detect and understand 
biodiversity change (Kickert et al. 1997; Craine et al. 2007; Scholes et al. 2008).  

Recognizing these challenges, a number of global and ‘regional’ (defined as involving 

more than one country) biodiversity monitoring networks have been established in 

different parts of the world (Craine et al. 2007). These networks seek to maximize and 

scale the efficiency and power of individual research and monitoring efforts by connecting 

them into a coordinated system to increase their power and value. This includes tropical 

regions where a number of regional and trans-continental networks have recently been 

established to produce interoperable, harmonized in-situ biodiversity observation data 

(for examples of outputs from tropical regional networks see: Beaudrot et al. 2016; Shin-

ichi Nakano et al. 2012). Beyond the direct benefits of harmonized and scaled in-situ 

research and monitoring, the outputs of these coordinated efforts can also be integrated 

with remotely sensed data allowing for validation and calibration of remotely sensed data 

and the interpolation and extrapolation of biodiversity change across multiple scales 
(Pettorelli et al. 2014). See section 4.2 for more information on in-situ data. 

The following sections profile several existing examples of tropical and sub-tropical 

regional biodiversity observation networks (Section 7.1) and provide guidance on the key 

attributes required for a sustainable and user-driven biodiversity observation network, 

drawing upon examples and experiences of successful biodiversity observation networks 
from around the world. 

7.2 EXISTING NETWORKS 

The following profiles some existing regional networks operating in tropical and 

subtropical areas that can be seen as excellent examples of integrated, biodiversity 

observation networks. One from the Asia-Pacific region, one from the Africa continent 

and one that spans Latin America, Africa and Asia were chosen to be highlighted. Beyond 

their direct value, these networks can also serve as ground validation and calibration 

sites for remotely sensed biodiversity observation data thereby providing complementary 

methods to produce a richer source of information for applications such as spatial 

modelling and scaling plot based measures to regional analyses (Muchoney 2008; 
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Scholes et al. 2011; Stephenson et al. 2015). In some cases, these networks are already 

actively integrating in-situ data with remotely sensed data to infer biodiversity change. 

Asia-Pacific Biodiversity Observation Network 

The Asia-Pacific Biodiversity Observation Network (AP-BON) was established in 2009 as a 

regional network of the Group on Earth Observations – Biodiversity Observation Network 

(GEO BON). It involves most countries33 of the Asia-Pacific region and is supported by a 

Secretariat at the Biodiversity Center of Japan in the Nature Conservation Bureau of the 

Ministry of Environment with in-kind and direct support also coming from agencies found 

within each country of the network. . It covers all levels of biodiversity and ecosystems 

and employs both remote sensing techniques, and in-situ observations and includes 

ecological process, ecosystem service, and targeted species and genetics research.  

The vision of AP-BON is (1) to establish a coordinated Asia-Pacific network that gathers 

and shares information on biodiversity and ecosystem services, (2) to develop regional 

BON in a Box (GEO BON global toolkit) applications, and (3) to contribute to improving 

ecosystem management, sustainable use of biodiversity, and human well-being. Since 

2009, AP-BON has had six workshops and published two books on biodiversity and 

ecosystems in the Asia-Pacific region. Further, AP-BON has contributed to the annual 

GEOSS-Asia Pacific symposia to tighten linkages with GEO activities in other social 

benefit areas. The goal is for regionally coordinated biodiversity research and monitoring 

using harmonized approaches, tools and data management to answer key questions, 
predict future scenarios and assemble data to inform regional and national assessments. 

AP-BON’s governance includes an international steering committee and five working 

groups (Genetics/phylogenetic diversity, terrestrial species monitoring, terrestrial 

ecosystem change, freshwater ecosystem change, and marine ecosystem change). Each 

working group is designing specific monitoring plans for their component. The steering 

committee provides overall governance and oversight and sets the strategic direction for 

the network while the working groups coordinate, at a technical level, the research and 

monitoring activities under five themes.  

AP-BON’s work to date includes facilitating the establishment of national biodiversity 

observation networks in each of the countries found within the network to support 

required reporting on the status and trends of biodiversity as per the requirements from 

the Convention on Biological Diversity. To date, three national BONs have been 

established (Japan, Korea and China) and other countries in the network are on their way 

towards developing national BONs. It also includes developing integrated observation and 

assessment approaches for the region, development of a shared database using common 

data standards (e.g. Darwin Core) and capacity building including supporting the 

implementation and use of new technologies (e.g. e-DNA) and standard tools (e.g. 

distribution modelling). More detailed information on this network can be found at: 
http://www.esabii.biodic.go.jp/ap-bon/index.html  

Tropical Ecology Assessment and Monitoring Network 

The Tropical Ecology Assessment and Monitoring Network (TEAM) monitors long-term 

trends in biodiversity, land cover change, climate and ecosystem services in tropical 

forests with a particular focus on understanding the impact of climate change on 

                                           
33

 Australia, Bangladesh, Brunei Darussalam, Cambodia, China, Chinese Taipei, Fiji, India, Indonesia, Japan, 
Kazakhstan, Republic of Korea, Lao, Malaysia, Mongolia, Myanmar, Nepal, Palau, Papua New Guinea, 
Philippines, Samoa, Singapore, Thailand and Vietnam. 

http://www.esabii.biodic.go.jp/ap-bon/index.html
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ecosystem health. Operating in 14 countries34, it focuses on measuring and comparing 

plants, terrestrial mammals, ground-dwelling birds and climate using globally standard 

methodology in a range of tropical forests, from relatively pristine places to those most 

affected by people. TEAM conducts integrated research and monitoring in sixteen tropical 

forest sites across Africa, Asia and Latin America supporting a network of scientists 

committed to standardized methods of data collection to quantify how plants and animals 

respond to pressures such as climate change and human encroachment. A key feature of 

TEAM is its widespread deployment and use of camera traps to monitor terrestrial 

mammals and ground-dwelling birds. To date, it has collected over 2.6 million images 

and has developed the Wildlife Picture Index as a tool for analysing and tracking 

vertebrate trends using consistent methodology within and across its sites. TEAM makes 

all of the network data publicly available as it is collected, in near real time, which allows 

TEAM to operate as an early warning system for tropical ecosystems.  

TEAM has a coordinating unit located at Conversation International’s headquarters in 

Washington, DC that provides the overall day to day administrative and technical 

management of the network. The network has 297 members consisting largely of data 

collectors at the individual sites found within the 14 countries of the network. As well, a 

nine member Science Advisory Board provides overall strategic direction and oversight 

for the network. More detailed information on this network can be found at: 
http://www.teamnetwork.org/  

Southern African Service Center for Climate Change and Adaptive Land 

Management 

The Southern African Service Center for Climate Change and Adaptive Land Management 

(SASSCAL) is a joint initiative of Angola, Botswana, Namibia, South Africa, Zambia, and 

Germany, responding to the challenges of global change. The establishment of SASSCAL 

was set up to complement the existing research and capacity development 

infrastructures and research initiatives in the region. Its mission is to conduct problem-

oriented research in the area of adaptation to climate change and sustainable land 

management and provide evidence-based advice for all decision-makers and 

stakeholders to improve the livelihoods of people in the region and to contribute to the 

creation of an African knowledge-based society. Its research themes include climate, 

water, agriculture, forestry, and biodiversity. Its approach is to support sustainable 

development and land-use/resource management decision-making and climate change 

risk mitigation and adaptation through the integration of research on land and resource 

management and climate change, and through compiling, analysing and disseminating 

best practices and developing and demonstrating the feasibility of adapted land 
management systems and strategies. 

SASSCAL’s core activities include integrated research on climate change and land 

management, capacity building activities that support national, regional and local 

institutions and service providers to develop relevant skills, and regional advisory and 

information services and products which includes a series of interlinked data centers. 

Specific biodiversity related research and monitoring to date include detailed inventories, 

monitoring and assessments of animals in Angola and the assembly of plant and 

vegetation databases in Namibia. More detailed information on this network can be found 
at: http://www.sasscal.org/index.php  

 

 

                                           
34

 Costa Rica, Panama, Ecuador, Peru, Brazil, Suriname, Cameroon, the Republic of Congo, Rwanda, Tanzania, 
Madagascar, Lao, Malaysia and Indonesia. 

http://www.teamnetwork.org/
http://www.sasscal.org/index.php
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Table 7.1 Summarizing the Key Attributes of Existing Tropical Biodiversity Observation 

Networks 

Network 
Countries 

Involved 

Start 

Year 

Realms 

Covered 

EBV Classes 

Covered 

Lead Organization 

and Contact 

Information 

AP-BON Australia, 

Bangladesh, Brunei 

Darussalam, 

Cambodia, China, 

Chinese Taipei, Fiji, 

India, Indonesia, 

Japan, Kazakhstan, 

Republic of Korea, 

Lao, Malaysia, 

Mongolia, 

Myanmar, Nepal, 

Palau, Papua New 

Guinea, Phillipines, 

Samoa, Singapore, 

Thailand, and 

Vietnam 

2009 Marine, 

Freshwater, 

Terrestrial 

Genetic 

composition, 

Species 

populations, 

Species traits, 

Community 

composition, 

Ecosystem 

Structure, 

Ecosystem 

function 

AP-BON Secretariat: 

webmaster@biodic.go

.jp 

http://www.esabii.bio

dic.go.jp/ap-

bon/aboutus/index.ht
ml 

 

TEAM Costa Rica, 

Panama, Ecuador, 

Peru, Brazil, 

Suriname, 

Cameroon, the 

Republic of Congo, 

Rwanda, Tanzania, 

Madagascar, Lao, 

Malaysia and 

Indonesia 

2002 Terrestrial Species 

populations, 

species traits, 

community 

composition, 

ecosystem 

structure, 

ecosystem 

function 

Conservation 

International, 

help@teamnetwork.o

rg; 

www.teamnetwork.or

g/contact  

SASSCAL Angola, Botswana, 

Namibia, South 

Africa, and Zambia 

 Terrestrial, 

Freshwater 

Genetic 
composition, 
Species 
populations, 
Species traits, 
Community 
composition, 
Ecosystem 
Structure, 
Ecosystem 
function 

 

SASSCAL, 

Norbert.juergens@t-

online.de; 

http://www.sasscalob

servationnet.org/ 

 

  

mailto:webmaster@biodic.go.jp
mailto:webmaster@biodic.go.jp
http://www.esabii.biodic.go.jp/ap-bon/aboutus/index.html
http://www.esabii.biodic.go.jp/ap-bon/aboutus/index.html
http://www.esabii.biodic.go.jp/ap-bon/aboutus/index.html
http://www.esabii.biodic.go.jp/ap-bon/aboutus/index.html
mailto:help@teamnetwork.org
mailto:help@teamnetwork.org
http://www.teamnetwork.org/contact
http://www.teamnetwork.org/contact
mailto:Norbert.juergens@t-online.de
mailto:Norbert.juergens@t-online.de
http://www.sasscalobservationnet.org/
http://www.sasscalobservationnet.org/


   

286 

 

7.3 Developing new networks: guidance  

Developing a national or regional Biodiversity Observation Network (BON) that is 

sustainable, efficient, powerful and well connected to policy needs requires a systematic, 

open and inclusive process for successful development and implementation (Gill 2015). 

As well, it is important that a BON does not develop and operate in isolation, but rather 

draws from and contributes to broader regional and global biodiversity observation 

efforts while, at the same time, allows flexibility and customization to respond to national 

and sub-national needs. In this regard, the GEO BONis focused on working with national 

and regional organizations to help facilitate effective and efficient biodiversity observation 

networks that, first and foremost, respond to and serve user needs at the national and 

sub-national level (e.g. policy and decision-makers) (Scholes et al. 2011). While also 

contributing to the development of a global, interoperable network for biodiversity 

observations that improve our overall ability to detect, track and understand global and 
regional biodiversity trends (Scholes et al. 2008; see www.geobon.org).  

Key Attributes of a Successful and Sustainable Biodiversity Observation 

Network 

In many instances, biodiversity observation programs are established through the good-

will, interest and enthusiasm of a group of individuals whether its in the academic, 

government or NGO realm. However, these programs are often not sustained as they are 

missing some key attributes, particularly regarding direct connections to policy-making 

and/or clear monitoring objectives (Yoccoz et al. 2001). Considering the considerable and 

varied challenges facing biodiversity conservation, it is critical that biodiversity 

observation programs and networks are well thought in their design to ensure they are 

efficient and effectively serving conservation and sustainable development decision-

making (Legg and Nagy 2006). If they fail to achieve this, they can end up misinforming 

conservation efforts and/or unnecessarily use up limited resources available for 

conservation. Below, eleven key attributes are listed that define a successful and 

sustainable biodiversity observation network or program: 

1. Clear authorizing environment for the BON, direct connections to decision and 

policy-making and clearly defined user needs and objectives; 

In order for a network to be sustained over the long-term, the network needs to have 

clearly defined user needs, should be formally recognized to respond to these needs, and 

is clearly and effectively serving the needs of decision and policy makers. While regional 

networks often begin via the dedicated efforts and enthusiasm of a set of scientists 

volunteering their time who see the value in integration and coordination of biodiversity 

observations, it is critical that the network quickly establishes clear links to decision-

making mandates and designs itself to produce data relevant to serve those mandates. 

This typically involves a co-development process where decision-makers and scientists 

work together to identify the key goals and objectives of the observation network. Clearly 

defined and articulated objectives and questions provide a clear purpose and roadmap for 

the development and operation of the BON (Yoccoz et al. 2001; Craine et al. 2007). In 

many cases, observation networks have developed with only a vague understanding or 

articulation of their core objectives. Without this being specifically stated and defined, the 

network risks both drifting over time (aka ‘mission-drift’) resulting in the failure to 

establish long-term datasets and/or not being successful in mobilizing sustained funding 

support. 

In the case of all biodiversity observation networks, the most important needs and 

objectives are typically those that serve domestic information needs such as for land-use 

and conservation planning, species-at-risk recovery, and environmental impact 

http://www.geobon.org/
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assessment. Additionally, however, all tropical nations are signatories to the Convention 

on Biological Diversity (CBD). This provides a common need and platform for monitoring 

and reporting on the status and trends in biodiversity and thus, can serve as a 

mechanism for organizing the regional biodiversity observation focus and approach. 

Other multi-lateral environmental agreements such as the Ramsar Convention or the 

Convention on Migratory Species and related global or regional strategies (e.g. the Global 

Strategy for Plant Conservation) can serve in a similar fashion by providing a common 

purpose and objective for the regional observation network. Outputs from these networks 

should directly support national reporting obligations as signatories to these multi-lateral 

environmental agreements. An example of this is the Wildlife Picture Index, an output 

from the TEAM network, which can be used to assess progress towards the CBD Aichi 

Target 12 (By 2020, the extinction of known threatened species has been prevented and 

their conservation status, particularly of those most in decline, has been improved and 
sustained). 

2. Early, targetted, relevant, credible and frequent outputs that showcase the value-
added of an integrated effort for: 

 Scientists; 

 Policy and decision-makers; and, 

 Public (regular and frequent information on the state of biodiversity and 
ecosystem services) 

While there are clear reasons and benefits for establishing regionally coordinated 

biodiversity observation networks, it is equally important to clearly and effectively 

demonstrate this value to both the participants in the network (e.g. scientists) and the 

recipients of the outputs (i.e. decision-support for the public and policy makers). With 

regard to policy makers, the most effective way to demonstrate value is through the 

early and repeated production of relevant policy support tools and information that 

directly support and/or inform decisions that could not be made without the integration 

of data across regional scales (e.g. see above with regard to the Wildlife Picture Index 

and Aichi Target 12). In the case of maintaining scientist involvement, scientists are 

typically overwhelmed by their own day to day demands and responsibilities, thereby 

requiring the regional network to clearly indicate the value-added for a scientist to 

engage and contribute to the network. This is typically done through allowing for clear 

opportunities to access and share data, tools and funding, and improve the opportunity 

for the development of publications, models, assessments and indicators. It can also be 

seen as an avenue by which an individual scientist’s work can directly or indirectly 

influence policy-decision making. For the public, this involves regular and frequent 

infromation on the state of biodiversity and ecosystem services and the need for 

sustained observations and monitoring to inform effective policy to preserve both. In all 

cases, careful thought must be put into the design of products to ensure that they are 

user friendly and effectively target the relevant user groups and address their priority 

information needs. 

3. A network of diverse and active contributors; 

Regional networks are fundamentally reliant on the people that comprise the network. In 

most cases, regional networks are envisioned and built by a small group of visionary and 

motivated people who see the value of their establishment. However, the transition from 

design and implementation to sustained operation can be difficult if not specifically 

accounted and planned for. Since the inherent value of a BON is, in part, due to its 

longevity (i.e. its production of long-term data), succession plans and continual 

recruitment are key. A network comprised and solely led by late-stage career scientists 

becomes vulnerable to the loss of a small number of participants. A network is also at 

risk if it is soley comprised of scientists with little local expert involvement. To enhance 
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the resilience of a network, it is important to involve and continually recruite young 

scientists and where relevant citizen scientists, and allow them opportunities to grow into 

leadership roles. It is also important to include, where feasible, user groups in the 

network to ensure a continual close connection with user needs to maintain the relevance 

of the network. 

In many cases, particulary in tropical regions, successful observation systems and 

networks are ones that directly involve local participation. This both lowers the cost of 

operation (e.g. more cost-effective sampling) but also helps to ensure that the outputs of 

the observation system are locally relevant and understandable by local citizens who 

fundamentally rely on the information to make decisions (Danielsen et al. 2003). 

In order to keep the network active, it is essential that remote communication (emails, 

skype) are not the only means of communication. As humans are social animals, regular 

face to face meetings create the environment for sustained connections based on 

friendship, belonging, peer pressure, mutual interest and trust. While on a day to day 

basis remote communication is key, it alone cannot establish this. While face to face 

meetings are costly, they are essential and help ensure that the collective commitments 

of the network participants are met. The trick is to minimize these costs to the extent 

possible so that the benefits of network function outweight them. In many cases, 

meeting costs can be mitigated by scheduling them to co-occur during other regional or 
international meetings, conferences and workshops.  

4. Start small and build on existing monitoring/observation capacity and information 
using simple and cost-effective methods; 

Another important consideration is to avoid the temptation to grow the network too 

quickly thereby challenging its very sustainability (Danielsen et al. 2003). Sustained 

networks tend to start out small, stay focused on their core objectives and carefully 

expand if the benefits outweigh the costs. As well, biodiversity observation activities are 

typically expensive and logistically challenging. There is great benefit in designing the 

sampling framework for the network to take advantage of and support existing 

infrastructure, data and observation capacities and to utilize simple and cost-effective 

data collection methods (Danielsen et al. 2003; Dias 2015). In too many cases, networks 

forget this and fall to the temptation of designing new sampling systems that ignore 

existing capacity and data (Gill 2015). This results in lost opportunities to repatriate and 
rescue historical and even paleo data and creates a network that is hard to sustain. 

5. Maintain focus on key variables and prioritize new observation efforts; 

Related to the previous attribute, a successful biodiversity observation network tends to 

stay true to its core variables and only expands observation efforts after careful analysis 

that identifies the most optimal areas to expand observation efforts. Again, the greatest 

value for a BON is its ability to produce consistent, scientifically credible long-term data 

sets that are relevant to decision and policy-makers. The challenge for long-term 

networks is to maintain their discipline to focus on their core variables when demands 

from funding mechanisms continually change. A successful network tends to be good at 

securing new funding through their ability to creatively and flexibly meet multiple needs 
whilst maintaining support for their core program. 

6. Simple, efficient internal governance with team member roles clearly defined 
reflecting the political nature of the region in question; 

A formal governance structure is important for clearly defining roles and responsibilities 

within the network and ensuring a balance of power that reflects the political nature of 

the region in question. It is equally important that the governance structure is simple and 
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efficient, thereby lowering the overhead costs for maintaining it (e.g. holding regular face 

to face meetings, etc.). As well, the network’s operational costs must be less than the 

benefits accrued from working in an integrated, networked manner (Costello et al. 2014). 

In some cases, a regional political body can provide the formal mechanism and mandate 

for the needed ongoing engagement of scientists, local experts and research and 

monitoring networks found within each nation (e.g. the Arctic Council provided this for 

the Circumpolar Biodiversity Monitoring Program). In many cases, however, no such 

regional body exists and thus, the governance must be developed from the beginning. 

For small networks, one team comprised of a mix of technical experts and decision-

makers may be sufficient. In other cases, involving larger regions that must taken into 

account complex mandates, two bodies may be needed with clearly differentiated roles. 

The first body is comprised of decision-makers and ‘users’ of the outputs of the 

observation network with the responsibility of setting the overall objectives and 

monitoring the progress of the network to fulfill them. The second body consists of 

technical experts that focus on the technical details of design and implementation of the 

biodiversity observation network. 

7. Data management, analysis, communication and reporting built into the original 
design and budgeted for;  

Observation networks need to account and budget for not only the design and 

implementation of the observation effort but also for the effective management, analysis, 

communication and reporting of the subsequent data produced. These are critical 

ingredients for a successful regional biodiversity observation network that are often an 

afterthought. Ignoring these needs risks stranding the data through the limitation of the 

network to convert it into useful products. Without equal care and attention given to data 
management, analysis and reporting, a network is unlikely to be sustained by funders. 

8. Utilization of common or comparable standards, collection protocols and tools; 

A fundamental principle of a regional biodiversity observation network is to promote and 

support harmonized approaches to biodiversity observations thereby, producing 

interoperable data that can be easily aggregated and disaggregated to inform a variety of 
needs. 

9. Core, secretariat operations supported and diverse and leveraged funding 
sources; 

It is rare for one single and sustained source of funding to be available to support a 

regional biodiversity observation network over the long-term. In most cases, the reality 

is that one must seek multiple sources of funding that, in many cases, don’t directly 

support the core operations of the network but rather focus on related research projects 

that are of a short-term nature. It is important, therefore, for the network to use its 

members to creatively produce a diverse and networked set of funds. The more funding 
sources, the more likely that the network can sustain itself over the long-term.  

10. People of influence (‘champions’) within national governments and funding 
sources in the program’s governance structure; 

Where possible, selecting not only subject matter experts but also representatives 

positioned well within national governments and/or have strong connections to funding 

sources can greatly increase sustained funding opportunities for the networks. 

11. Ensure sampling effort to maintain adequate statistical power to confidently detect 
change. 
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Biotic variables tend to vary greatly in both space and time, requiring significant 

sampling efforts to produce adequate statistical power. In many programmes, power 

analysis of the parameters measured has not been conducted and in many cases, the 

parameters chosen require sampling efforts orders of magnitude greater than what can 

be technically or financially achieved. In the design and implementation of a biodiversity 

observation program, care must be taken to choose realistic parameters for 

measurement and, during the implementation phase, power analysis should be 

conducted on preliminary and existing data (if available) to measure variation to allow for 

power analysis. Without this analysis, an observation network’s outputs can be 

misleading and lead to the waste of limited resources that could have been used for other 
purposes (Legg and Nagy 2006; Yoccoz et al. 2001). 
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8 SYNERGIES BETWEEN BIODIVERSITY 

MONITORING AND REDD+ 

Scott Goetz, Woods Hole Research Center 

Brice Mora, GOFC-GOLD Land Cover Project Office 

 

8.1 INTRODUCTION  

Deforestation has been identified as a major driver of both biodiversity loss and climate 

change (Baillie et al., 2014; Smith et al., 2014). The agriculture, forests and other land 

use (AFOLU) sector represented 24% of global net anthropogenic greenhouse gas (GHG) 

emissions in 2010 (Smith et al., 2014). During the 2000s, annual carbon emissions from 

deforestation and forest degradation in tropical forests represented about 10% of the 

total anthropogenic emissions of GHGs (Smith et al., 2014; Le Quere et al. 2015). To 

help mitigate GHG emissions from the AFOLU sector, the Paris Agreement signed in 

December 2015 by the Parties of the United Nations Framework Convention on Climate 

Change (UNFCCC), referred explicitly to the Reducing Emissions from Deforestation and 

forest Degradation (REDD+) framework (UNFCCC, 2015). The REDD+ mechanism is 

composed of the five following activities: a) Reduced emissions from deforestation, b) 

Reduced emissions from forest degradation, c) Conservation of forest carbon stocks, d) 

Sustainable management of forests, e) Enhancement of forest carbon stocks. 

All scenarios of the Millennium Ecosystem Assessment have forecasted with high 

certainty the loss of habitat and local species in tropical forests and tropical woodlands 

due to anthropogenic activities (Millennium Ecosystem Assessment, 2005). To address 

these threats, the Convention on Biological Diversity’s (CBD) Decision XI/19 “urges 

Parties, other Governments, and relevant organizations to fully implement the relevant 

provisions and decisions of the Convention on Biological Diversity and the United Nations 

Framework Convention on Climate Change in a coherent and mutually supportive way” 

(UNCBD, 2012). The Parties of the CBD also adopted a Strategic Plan to protect 

biodiversity for the period 2011-2020, which comprises a series of 20 targets known as 

the Aichi Biodiversity Targets35. A number of these targets are important for forest 

ecosystems, for example Target 5 aims to at least halve the rate of loss of all natural 

habitats, including forests, by 2020. The CBD Strategic Plan is implemented primarily at 

the national level through activities that consider local circumstances as outlined in 

National Biodiversity Strategies and Action Plans (NBSAPs). 

Possible synergies between biodiversity monitoring and REDD+ activities are summarised 

by Latham et al. 2014 (Table 3). Synergies include co-benefits of forest conservation that 

support the achievement of REDD+ objectives related to GHG emissions reductions, while 

also providing essential habitat and related biodiversity monitoring activities undertaken 

as part of REDD+.  

Five options that can facilitate synergies between REDD+ and NBSAP initiatives were 

identified by Miles et al. (2013): 1) inter-sectoral coordination between CBD and REDD+ 

focal points and implementing agencies, 2) development of approaches that consider all 

existing processes and guidelines on forests at the national level, 3) consideration of 

NBSAP commitments in REDD+ activities, 4) identification of potential contributions and 

trade-offs from REDD+ in NBSAP activities, and 5) communication of such information to 

REDD+ decision makers to support the Cancun safeguards (UNFCCC, 2011). Possibilities 

to include REDD+ activities in existing biodiversity monitoring systems have also been 

presented (Dickson and Kapos, 2012; Latham et al., 2014). Venter et al. (2009) discuss 

the possibility of significantly increasing the biodiversity benefits of REDD+ by 

incorporating biodiversity values in REDD+ planning.  
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Decision 4/CP.15 of the Conference of Parties to the UNFCCC requested developing 

country Parties engaged in REDD+ to consider, according to national circumstances, the 

use remote sensing data in combination with ground data to establish National Forest 

Monitoring Systems (UNFCCC, 2010). Several publications present and discuss such 

techniques (e.g., GOFC-GOLD, 2014; GFOI, 2014; Goetz et al. 2015; Romijn et al. 

2015). To help progress towards the Aichi Targets, the Group on Earth Observations, 

Biodiversity Observation Network (GEO BON) proposed a first set of 22 Essential 

Biodiversity Variables36 (EBVs) that could be used as a global-scale basis for biodiversity 

monitoring. Pereira et al. (2013) define EBVs as “a measurement required for study, 

reporting, and management of biodiversity change”, fostering the use of remote sensing 

data to enable large-scale generalization. Some of these EBVs can be developed and 

monitored with the use of remote sensing data (Secades et al., 2014). However, for 

tropical forests, the development of reliable indicators and baselines that can be 

monitored remotely is still lacking or not entirely agreed upon (Skidmore et al., 2015). 

This sourcebook helps to address the potential for remote sensing of EBVs by presenting 

techniques that are suitable five EBVs relevant to tropical forest environments 

(Vegetation phenology, Net primary productivity, Ecosystem extent and fragmentation, 

Habitat structure, and Disturbance regime). See Chapter 2 of this sourcebook for more 

information on the concept of EBVs. This section presents options identified in the 

literature to synergize efforts aimed at conserving biodiversity and mitigating climate 

change. 

 

8.2 INSTITUTIONAL ARRANGEMENTS & OUTCOMES 

A joint Zoological Society of London (ZSL) and Deutsche Gesellschaft fur Internationale 

Zusammenarbeit (GIZ) sourcebook on biodiversity monitoring for REDD+ proposes a 

framework aimed at supporting countries efforts to develop integrated biodiversity and 

REDD+ monitoring activities (Latham et al., 2014). The sourcebook provides guidance on 

how to develop monitoring systems at different spatial scales that are capable of 

supporting requirements for both climate and biodiversity conventions, illustrated by 

individual country framework scenarios. Analysis of a series of country cases (Cameroon, 

Uganda, Columbia, Vietnam, Philippines) indicates that these countries recognize 

potential synergies between NBSAPs and REDD+ (CBD, 2014). Most of these countries 

have developed inter-ministerial communication and complementary actions to meet 

objectives of both initiatives (e.g. management of protected areas). However, 

coordination between initiatives varies substantially from one country to another. 

Information on how to determine the best institutional arrangements for forest 

monitoring, based on local circumstances and tailored objectives, has been well 

documented in literature on REDD+ (Mora et al., 2012, Gupta, et al., 2013, GOFC-GOLD, 

2014) and biodiversity monitoring more generally (Christophersen and Stahl, 2011, 

Dickson and Kapos, 2012, Gardner et al., 2012).  

In order to address concerns related to biodiversity safeguards for REDD+ activities, a 

stepwise approach has been proposed by Gardner et al. (2012). The three-tiered 

approach mirrors that of existing IPCC architecture for assessing carbon emission, with a 

monitoring framework that gradually increases in complexity: starting with globally 

available datasets (e.g., coarse-scale estimates of forest types and levels of disturbance), 

then moving to national data (e.g., national forest monitoring data, remote sensing-

based data), and finally incorporating newly collected field data to measure changes in 

biodiversity. The framework also discusses possible institutional arrangements for the 

coordination and implementation of the monitoring activities. The overall approach can 

be compared with the one proposed by Herold et al. (2012) for developing REDD+ 

reference levels by countries.  
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Synergies in objectives, activities and monitoring can not only be developed between 

biodiversity and carbon emission reduction programmes, but also with those considering 

other initiatives aimed at mitigating illegal deforestation. For example, the 2003 

European Union’s Action Plan on Forest Law Enforcement, Governance and Trade (FLEGT) 

focuses on combating trade from illegal timber via Voluntary Partnership Agreements 

(VPAs) (European commission, 2003). Tegegne and Lindner (2014) demonstrate how 

synergetic linkages between REDD+ and FLEGT can be developed, stressing the need to 

strengthen knowledge and information sharing among the different institutions in charge 

of REDD+ and related monitoring initiatives (e.g. Ministries etc.). They note the 

respective Secretariats of REDD+ and FLEGT should identify crosscutting issues, common 

interests, and be supported by sustained political incentive with dedicated resources. 

There is also need for an integrated donors approach to encourage and support both 

regimes in their efforts to develop such a framework. Coordination should also be 

developed at the technical level (e.g. fieldwork, mapping activities). For example, the 

Copernicus Sentinel-1/-2 constellations provide a wealth of free, open access, optical 

high spatial resolution Earth observation data that enable a high revisit time period, 

further strengthened when combined with Landsat data. Such data can improve the 

monitoring capabilities for REDD+, while also enabling the early detection of illegal 

harvesting activities (e.g. outside concession areas), thus facilitating the implementation 

of FLEGT VPAs.  

Outcomes of positive synergies between REDD+ and conservation initiatives have been 

reported in Indonesia, with 25% of ongoing REDD+ activities spatially overlapping 

protected areas (Murray et al. 2015). The additional source of funding provided by 

REDD+ programs in such protected areas can be beneficial, since at least 11% of the 

protected areas in Indonesia are threatened by medium to high deforestation rates 

(Murray et al., 2015). Jantz et al. (2014) propose multi-criteria approaches to identify 

‘carbon corridors’ that allow the connection between different protected areas, in South 

America, Africa and South East Asia. Such corridors have the potential to improve habitat 

connectivity while avoiding deforestation and forest degradation. The approach can be 

adapted to local circumstances and priorities, taking into account local population 

livelihoods and land ownership. Feeley and Rehm (2014) argue that the design of such 

corridors should consider edge effects and the specific needs of migrating species, 

ensuring that connected habitats have consistent characteristics. 

 

8.3 POTENTIAL ISSUES AND ADVERSE EFFECTS 

Efforts aimed at conserving forest biomass globally can be significantly beneficial to 

biodiversity, and vice-versa, even though the benefits may be unevenly distributed. 

Strassburg et al. (2010) note biodiversity-rich regions with low carbon value could 

experience greater human pressure due to REDD+ activities being implemented nearby. 

Expanding on this issue, another global study by Di Marco et al. (2015) concludes that 

expanding protected areas where the potential loss of aggregate species’ suitable habitat 

is highest, could contribute to safeguarding about 30% more carbon stocks than 

expanding protected areas where deforestation rates are highest. The authors point out 

potential conflicts between solutions to biodiversity loss, stressing the necessity to adopt 

a strategic framework considering the entire set of Aichi targets, and other relevant 

policy requirements. A stepwise approach could be considered following the 

recommendations of Panfil and Harvey (2015), by developing adaptive monitoring 

systems that allow the integration of new information on biodiversity and other impacts 

as knowledge and techniques evolve. 

Five policy approaches to biodiversity co-benefit approaches of REDD+ policies, have 

been proposed by Phelps et al. (2012). They discuss respective strengths and limitations 

of each approach and note that prioritizing win-win circumstances (e.g. forests of high 

carbon density and species richness) may also accommodate setting aside forests of 

lower carbon density but of high biodiversity value. They also discuss possible negative 
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impacts of having non-coordinated REDD+ and biodiversity activities happening in the 

same region, including the possibility of generating competition between activities and 

thereby also driving up financial costs. As always, costs are a particularly important issue 

that requires optimizing efficiencies of activities and monitoring. Biodiversity monitoring 

can be resource intensive so countries must undertake monitoring in the context of 

emissions reductions efforts, which is justified by the co-benefits of forest conservation 

related to avoiding deforestation and forest degradation. Venter et al. (2013) indicate the 

best way to combine conservation and REDD+ activities requires first letting REDD+ 

projects protect the relevant forests for REDD+, and then use biodiversity funds to 

protect the remaining forests in a given region. This recommendation is underpinned by 

the assumption that REDD+ activities will provide high collateral benefits to the targets 

of biodiversity action plans. Such actions can then focus on areas not sufficiently 

protected by REDD+ activities. This approach can be applied in other tropical regions 

with similar context, i.e. with high rates of deforestation and presence of iconic species. 

However, the authors indicate that such a recommendation would make the success of 

biodiversity aims dependent upon the success of the REDD+ activities, thus sharing 

experience and conducting collaborative planning can help reduce costs.  

 

8.4 COORDINATION OF R&D AND CAPACITY 
DEVELOPMENT ACTIVITIES  

As described above, significant advances have been made in recent years quantifying 

relationships between carbon dynamics and biodiversity in mature tropical forests, but 

substantial additional research is needed both within and beyond the tropics (Talbot, 

2010). For example, Murray et al. (2015) could not identify a clear correlation in 

Indonesia between forest carbon stocks and biodiversity measurements, such as species 

richness or the number of threatened species. Rather they found negative correlations at 

the national scale and weak positive correlations within islands. Similar findings have 

been reported elsewhere, such as in Madagascar (Wendland et al., 2010), and South 

Africa (Egoh et al., 2009). These findings may be related to the “defaunization” of forests 

(Redford, 1992), but the authors also highlight the impact that choice of biodiversity 

metrics has on resulting spatial patterns, with any particular taxa differing from the 

overall species richness when used as a measure of biodiversity.  

Related, a review of 80 REDD+ projects that address biodiversity issues following 

Climate, Community and Biodiversity (CCB) Standards, distributed over 34 countries, 

reveals most projects did not sufficiently define biodiversity conservation goals (Panfil 

and Harvey, 2015). Projects often do not provide quantitative targets for their 

biodiversity conservation objectives. Some projects did not provide methodological 

details (e.g. sampling design) or baseline reference scenarios of the project. Finally, 

some projects lacked alignment between the objectives, and clarity on how threats (or 

drivers of biodiversity loss) could be addressed to reduce pressure on intact forests. This 

reveals, among other issues, a lack of awareness related to providing and implementing 

methodologically robust approaches to forest monitoring systems in tropical regions. This 

was also highlighted in a recent study assessing national forest monitoring capacities in 

tropical countries, although there has been progress in monitoring capacities over the 

past decade (Romijn et al., 2015). Clearly broader capacity building activities are needed 

and must be coordinated to the extent possible for consistency across countries.  

 

8.5 CONCLUSION  

Discussions to reach internationally agreed upon policy frameworks to simultaneously 

tackle the issue of biodiversity loss and climate change mitigation are still ongoing. 

Agreement regarding which bio-indicators are the most relevant still needs to be 
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reached. To help with this, GEO BON is advancing establishment of a “best set” of EBVs. 

This effort has already identified some modalities to synergise activities, and lessons can 

be learned from early experience. The literature we have briefly summarized here 

provides substantial guidance on how to determine institutional arrangements for both 

biodiversity and carbon emission reduction programmes, based on the local 

circumstances and objectives. In particular, the ZSL-GIZ Sourcebook provides a 

framework to support countries in developing integrated biodiversity and REDD+ 

monitoring activities (Latham et al, 2014).  

For example, improved coordination between R&D institutes, and also national Space 

Agencies via the Committee on Earth Observation Satellites (CEOS), would enable faster 

progress in scientific and technical knowledge that is needed to bring some monitoring 

methods to an operational level. The relevant Tasks and Initiatives from GEO, such as 

the BON and GFOI (which foster coordination of research within their own field), could 

also improve information sharing to improve cross-coordination of their activities. Several 

capacity development initiatives exist, providing sourcebooks and training materials, and 

organizing training sessions (GOFC-GOLD, 2014, 2015; FCPF-UNREDD, 2015, GFOI 

2016). Better coordination of parallel and sometimes redundant initiatives has been 

initiated within the GHG emission mitigation community, with the help of the GFOI 

Secretariat. Such coordination considers other key partners such as GOFC-GOLD, the UN-

REDD Programme, the World Bank Forest Carbon Partnership Facility (FCPF), and the 

USA’s multi-agency SilvaCarbon Programme. 

Within the REDD+ framework, the Cancun safeguards encourage decision makers to find 

synergies between GHG emission reduction activities and biodiversity conservation, 

among other key issues such as indigenous rights and local community livelihoods. If 

properly considered, such safeguards will contribute towards achieving the CBD’s Aichi 

Biodiversity Targets. Potential adverse effects of insufficient biodiversity loss mitigation 

programmes have also been identified, as described above. This emphasizes not only a 

need for more research on such issues, but also more guidance to countries on how to 

best coordinate activities, particularly at the institutional level. 

This sourcebook, which belongs to the BON-in-a-Box toolkit series37, is complementary to 

the other existing materials providing guidance on how EBVs relevant to tropical forests 

can be effectively and consistently monitored. This living document will be updated 

annually to incorporate policy and methodological developments, notably on the progress 

made by various communities to better synergise their R&D and capacity development 

activities, ultimately for the benefit of improved forest monitoring and biodiversity 

conservation in tropical regions. 
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